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INTRODUCTION
The human body has more muscles than
degrees of freedom (DOF), which leads to
indeterminacy in the muscle force calculation.
In this study, an optimization problem to
estimate the lower-limb muscle forces during a
gait cycle of a patient wearing an instrumented
knee prosthesis is formulated. It consists of
simulating muscle excitations in a physiological
way while muscle parameters are calibrated.
Two different approaches are considered. In
Approach A, measured contact forces are
applied to the model and all inverse dynamics
loads are matched in order to get more
accuracy on muscle parameter calibration. In
Approach B, only the inverse dynamics loads
that are not affected by the knee contact loads
are matched. Using this approach, contact
forces can be predicted and validated by
comparison with the experimental ones. The
latter approach is a test of the optimization
method and it can be used for the cases that no
knee contact forces are available.

METHODS

The experimental data used in this study are
from the fourth Grand Challenge Competition to
Predict In Vivo Knee Loads [1], which are
available online. The patient was an 88 year old
male implanted with an instrumented knee
replacement in his right leg. Muscle forces were
estimated for one normal gait trial.

A patient-specific model of the subject’s leg
(pelvis through toes) was used to calculate joint
loads and muscle moment arms (Fig. 1). The
model was developed using OpenSim 3.0 [2]
and consists of six joints: pelvis (6 DOF), hip (3
DOF), knee (6 DOF), patellofemoral joint (6
DOF), ankle (2 DOF) and metatarsalphalangeal
joint (1 DOF). The knee implant was modeled
using the subject's tibial tray and femoral
component attached with a weld joint to the
tibia and femur, respectively. The model had 44
muscles with ligaments being neglected.

Fluoroscopy and implant contact force data
were used to generate dynamically consistent
knee motion data. This task was achieved using
pose optimization of an elastic foundation
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contact model of the subject's implant
components [3]. The optimized knee motion
was input to an OpenSim inverse kinematics
analysis that determined the hip (3 DOFs), knee
flexion, and ankle (2 DOF) angles that best
matched experimental marker data for the
selected gait trial.

An inverse dynamics optimization approach
was developed to predict muscle forces
consistent with all available experimental data,
including inverse dynamics loads (3 hip, 3 or 1
knee, and 2 ankle) calculated from experimental
marker and ground reaction data, knee
kinematics determined from fluoroscopic data,
muscle EMG curves, and instrumented implant
forces and torques.

Two categories of optimization problems
were formulated. The first (Approach A)
matched 3 inverse dynamics knee loads
(superior-inferior  force, adduction-abduction
moment, and flexion-extension moment) and
applied the experimental knee contact forces
and torques directly to the tibial tray and
femoral component. The goal was to verify that
the formulation could match all available
experimental data while producing
physiologically realistic muscle forces. The
second category (Approach B) matched only 1
inverse dynamics knee load (flexion-extension
moment) and did not apply the experimental
knee contact forces and torques to the model.
The goal here was to evaluate prediction of
medial and lateral knee contact force when
knee contact force data are not available.
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Fig. 1: Musculoskeletal lower-limb model.



For both approaches, muscle-tendon model
parameter values were calibrated as part of the
muscle force prediction process. Parameter
values that were calibrated include: optimal
muscle length 1] , tendon slack length ], peak
isometric force F", and activation and
deactivation time constants 7** and 7%*“. Both
approaches also adjusted B-spline nodes
defining the shapes of the muscle excitation
curves in the model.

The optimization problems were solved
using MATLAB's Levenberg-Marquardt non-
linear least squares algorithm (The Mathworks
Inc., Natick, MA). The cost function included
terms that tracked experimental data (inverse
dynamics loads and EMG curves normalized to
1), tracked uniformly scaled muscle-tendon
model parameter values, and bounded errors in
muscle excitation, normalized muscles lengths,
and normalized muscle velocities. Each term in
the cost function was represented as

1 exp
f_(r(xs—xk)/xk) (1)

where X is a design variable, X, is the value to
match, r is the allowable variation in the
variable, and exp is the exponent. Tracking
terms were given an exponent of 2, while
bounds terms were given an exponent of 10.
The cost function also included additional terms
to minimize excitations squared only for
muscles without EMG data (Approaches Al and
B) or for all muscles (Approach A2).

RESULTS AND DISCUSSION

Approaches Al and A2 were able to track all 8
inverse dynamics loads (and thus medial and
lateral knee contact forces) and the majority of
muscle EMG shapes closely (Tables 1 & 2).
These approaches produced physiologically
realistic values for normalized muscle lengths
and shortening velocities and muscle-tendon
parameter values that remained close to
uniformly scaled literature values. However,
when excitations were minimized for muscles
with experimental EMG data (Approach A2),
some muscle excitations were driven close to
zero, which was not physiological. Approach B
was also able to track 6 inverse dynamics loads
closely and an even larger number of muscle
EMG shapes closely while producing
physiologically realistic muscle forces with
parameter values closed to scaled literature
values (Tables 1 & 2). However, prediction of
the two omitted inverse dynamics loads at the
knee was poor, leading to over-prediction of
medial and lateral knee contact forces despite
minimization of excitations for muscles without
EMG data (Fig. 2).
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Al | 0.97 1 0.89 1 1 1 1 0.98
A2 | 0.97 1 0.89 1 1 1 1 0.98
B |-23] 1 |-19] 1 1 1 1 ]0.98
Table 1: R? values for inverse dynamics loads.
R*20.75 0.25<R*<0.75 R*<0.25
Al 14 5 6
A2 16 4 4
B 20 1 3

Table 2: No. of EMG signals within specified R? ranges.
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Fig. 2: Predicted medial and lateral contact forces for
optimization Approach B.

CONCLUSIONS

Overall, this optimization problem formulation
was able to match all experimental data well
when three inverse dynamics knee loads were
included in the problem formulation and
experimental knee contact forces were applied
to the model. Poor knee contact force prediction
when two inverse dynamics knee loads were
removed suggests an inadequate cost function
or missing elements from the model. EMG
tracking with simultaneous minimization of all
muscle excitations did not work well, suggesting
that a consistent method is needed for handling
muscles without and with experimental EMG
data (e.g., excitations constructed from
experimentally calculated muscle synergies).
Knee contact forces contributed significantly to
the knee flexion-extension moment during
stance phase, suggesting that a moving flexion-
extension axis may be needed to produce
proper contact force predictions.
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