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ABSTRACT 
One of the aims of the dynamic analysis of human gait is to 

know the joint forces and torques that the musculoskeletal 
system produces during the motion. For this purpose, an 18 
segment 3D model with 57 degrees of freedom is implemented. 
The analysis of a captured motion can be addressed by means 
of forward or inverse dynamic analyses. In this work, both 
analyses are computed using multibody dynamics techniques. 
The forward dynamic analysis is carried out with the aim of 
simulating the movement of the multibody system using the 
results of the inverse problem as input data. Since the inverse 
analysis is solved using a dynamically consistent methodology, 
the forward dynamic analysis allows us to simulate up to the 
90% of the gait cycle without any controller. After that, a 
proportional derivative (PD) controller is implemented to 
stabilize the system, which gets to simulate the complete 
captured motion. Moreover, the dynamic contribution of the 
controller is really low and the simulated motion is extremely 
close to the original one. The methodology presented allows us 
to validate the correctness of the inverse dynamics analysis and 
it is an intermediate step towards the prediction problem: it 
requires dynamical consistency too, but the uncertainties 
involved in the problem are lower than in a predictive 
approach.  

NOMENCLATURE 

 te  error signal in the PD control scheme 

 1,...,
T

nq qq  vector of generalized coordinates 

q  vector of generalized velocities 

q  vector of generalized accelerations 

 , ,
S

u v w  unit vectors used to define the local basis of 
segment S  

z  vector of independent coordinates 

z  vector of independent velocities  

z  vector of independent accelerations 

iI  identity matrix (ii) 

dK  derivative coefficient of the PD controller 

pK  proportional coefficient of the PD controller 

i
pK  proportional gain associated with segment i 

M  global system mass matrix 

T  kinetic energy 

 , ,
S

    orientation angles of segment S 

λ vector of Lagrange multipliers 

Φ  vector of kinematic constraints 

qΦ  Jacobian matrix of the kinematic constraints 

qΦ  time derivative of qΦ  

tΦ  vector containing the partial derivatives of 
the constraints with respect to time 

tΦ  time derivative of tΦ  

INTRODUCTION 
The human body can be modeled as a set of bones linked 

by joints forming the skeleton, and a set of soft tissues (flesh, 
organs and muscles). Using multibody dynamic techniques, 
multi-segment models can be created with relative ease and low 
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computational cost. The motion between the segments can be 
described by kinematic restrictions and the classical mechanical 
concepts provide us with the possibility of estimating the 
dynamic variables of the motion. 

One of the aims of human motion dynamic analysis is to 
know the forces and torques developed by the musculoskeletal 
system during a movement. Multibody dynamics techniques 
can provide quantitative results for a three dimensional motion 
using non-invasive devices and with minimal interference with 
the subject’s motion. Depending on the purpose of the study, 
multibody dynamics techniques can be employed in two 
different ways: inverse and forward dynamics [1].  

Inverse Dynamic Analysis (IDA) is used to calculate the 
net joint reaction forces and driver torques that the 
musculoskeletal system produces during human locomotion 
using acquired kinematic and kinetic data and estimated body 
segment parameters (BSP). This can be helpful for recognizing 
normal and pathological gait patterns. Conversely, Forward 
Dynamic Analysis (FDA) is used to predict the body movement 
from known muscle forces (or resultant joint torques) using 
principles of neural science (neurocontrol) or optimal control. 
This approach can be adequate for investigating aspects of 
muscle function and energetic cost, for simulating gait 
disorders or for predicting the combined actuation of the 
musculoskeletal system and assistive devices, such as 
exoskeletons or orthoses. 

The forward dynamics approach requires a control strategy 
for the actuation, and the resulting motion is computed through 
integration of the equations of motion. In recent years, new 
methods for efficient control of the musculoskeletal system 
using optimal control methods have been presented [2–5]. A 
growing interest in motion prediction has appeared during the 
last years, e.g., to anticipate the result of surgery, to help in the 
design of prosthetic/orthotic devices, or to study human motion 
dynamics performing various tasks [6, 7]. To this end, the 
motion parameters can be considered as design variables of an 
optimization problem. In this context, the determination of the 
joint efforts for a given motion (inverse dynamic analysis) is a 
required step for the subsequent evaluation of cost functions 
and constraints. 

In this work, both inverse and forward dynamics 
approaches are considered. Regarding the IDA, the movement 
of the subject is recorded in the laboratory using a motion 
capture system that provides the position along time of 37 
markers attached on the body. Position data are filtered using 
an algorithm based on Singular Spectrum Analysis (SSA) and 
the natural coordinates of the model are calculated using 
algebraic relations among the marker positions. Afterwards, a 
procedure ensures the kinematic consistency and the data 
processing continues with the approximation of the position 
histories using B-spline curves. The velocity and acceleration 
values are then obtained by analytical derivation. Once the data 
are processed, the IDA is computed and the joint torques and 
foot-ground contact wrenches are calculated. The double 

support indeterminacy is solved using the Corrected Force 
Plate (CFP) sharing approach developed by the group [8]. This 
method allows combining the force plate data and the markers 
information to obtain a set of dynamically consistent data, with 
no need either to modify the motion or to add residual 
wrenches. Regarding the FDA, in a first step it is carried out 
without any control strategy allowing us to simulate up to the 
90% of the gait cycle, when a divergence from the expected 
motion started. For this reason, and in order to increase the 
percentage of the gait cycle simulated, a PD controller is 
implemented.  

Although the IDA and the FDA approaches are separately 
common research topics in the field of biomechanics, a small 
number of studies prove the validity of the obtained results. 
The comparison between the results of a specific study and the 
ones present in the literature could not be enough for the 
validation of the results. Biomechanical analyses present a high 
amount of uncertainties and the results usually are plotted as 
the average value bounded by the standard deviation (which is 
large). Being within the limits does not guarantee the 
correctness of those results. 

 In this work, the results of the IDA are used as input data 
for the FDA; and the results of the latter (the motion) have been 
compared with the motion capture in the laboratory (input of 
the IDA). In an ideal case, the motion obtained through the 
forward simulation should be the original captured motion. : as 
long as the inverse and forward models are the same, the results 
would be close. However, the joint torques published in the 
literature (as a result of an IDA) are not always are dynamically 
consistent with the captured motion. And thus, if they are used 
to compute an FDA, the original motion is not obtained. 

Usually, in a biomechanics laboratory, the motion is 
recorded using a motion capture system and the contact 
interaction between the foot and the ground is measured by 
means of force plates. These devices provide the individual 
foot-ground contact wrench along the gait. If the kinematic 
information of the whole-body is known and the results from 
two force plates are used as inputs of the IDA (employing one 
plate for each foot-ground contact), the biomechanical system 
is overdetermined. Depending on the method used to solve this 
problem, the IDA results could not be dynamically consistent 
with the motion.  

For example, in order to obtain a single unique solution 
during the double support phase, some studies add a set of 
force and torque components (the residual wrench) to a 
segment (usually pelvis or trunk). The residual wrench does not 
have physical meaning and, in an ideal case, this wrench should 
be null. However, due to the errors in the data, it is not zero in 
general and some studies try to minimize this wrench using 
optimization techniques and modifying the BSP [9], the joint 
trajectories [10] or the joint accelerations [11-12]. In those 
cases, the final joint torques are not dynamically consistent 
with the captured motion. Thus, it is not possible to use inverse 
dynamics results as inputs of forward simulation without 
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including these nonphysical residual wrenches. Moreover, all 
these studies assume that the residual torques are small, and 
this assumption highly depends on the accuracy of the input 
measurements.   

Another method to solve the double support indeterminacy 
is to perform a least-squares inverse dynamics approach [13]. 
In this study, the constraints formed by imperfect 
measurements are relaxed and a static optimization problem is 
used to adjust the angular acceleration of the segments and the 
foot-ground contact forces to obtain the solution that is 
simultaneously most consistent with measured accelerations 
and contact forces. However, the estimates of the torques are 
not dynamically consistent over time and thus, the resulting 
accelerations, when integrated in a forward dynamic analysis, 
would not reproduce the original motion.  

In both cases, if a FDA is computed using the IDA result as 
input data, the obtained motion will not match the original one. 
Since the IDA carried out in this work gives a set of 
dynamically consistent forces and torques, without adding 
residual wrenches nor modifying the motion, the use of the 
FDA allows us to validate the accuracy of the inverse dynamics 
methodology used and it represents a first step towards human 
gait prediction. 

DYNAMICS MODELING 

Biomechanical Model 

The human body is modeled as a multibody system formed 
by rigid bodies, an approach which has been widely used to 
analyze human gait [1, 14–16]. The modeling of the human 
body by means of rigid bodies is a reasonable assumption if the 
motion involves big movements without strong impacts as in 
human locomotion [14]. 

The 3D model used consists of 18 anatomical segments: 
two hindfeet, two forefeet, two shanks, two thighs, pelvis, 
torso, neck, head, two arms, two forearms and two hands. The 
segments are linked by ideal spherical joints defining a 57 
degree of freedom (DOF) model. 

The kinematic information of the motion is obtained from 
the trajectories of a set of 37 markers attached to the human 
body (Figure 1(a)). The marker positions are used to determine 
the orientation of each rigid body and to define the position of 
the 17 anatomical joints (Figure 1(b)). The horizontal global 
axis X points to the direction of motion, the Z axis is 
perpendicular to the floor and pointing upwards, and the Y axis 
is defined so that  X, Y, Z  is a positive defined orthonormal 
basis. 

The configuration of a body segment is defined through 
the position of one of its points and its orientation with respect 
to the ground frame. For all segments, the chosen point will be 

(a) (b) (c) (d) 

Figure 1. Biomechanical model used: (a) 3D model of the human body. (b) Numeration of the seventeen joints. (c) Points and unit vectors defining 

the model in a general posture. (d) Sagittal view of the model at the reference posture. 
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the proximal joint. In order to compute the orientation, local 
bases  X , Y , Z

S
  

 
are defined for all segments (Figure 1(c)). 

Unit vectors  , ,
S

u v w
 
are used to define the axes of the local 

bases. Note that in the reference posture, the orientation of each 
local basis matches the one of the absolute basis  X, Y, Z  
(Figure 1(d)). 

The 3D model of the subject has been developed in mixed 
(natural plus angular) coordinates and it is modeled using 228 
dependent coordinates: 22 points (which correspond to the 
positions of all the spherical joints, along with the centers of 
mass of the five extreme segments: head, hands and forefeet) 
plus 2 orthogonal unit vectors for each rigid body (so, 36 
vectors). Both, points and vectors are expressed using three 
Cartesian coordinates, thus making a total of 174 variables. The 
remaining 54 variables are the 18 sets of 3 angles that define 
the orientation of each segment with respect to the absolute 
frame. 

Gait Analysis Laboratory 

The subject selected to perform the experiments is a 
healthy adult male, 34 years old, mass 85 kg and height 1,82 m. 
He walks on a walkway that encloses two force plates (AMTI, 
AccuGait sampling at 100 Hz). The motion is captured by 12 
optical cameras (Natural Point, OptiTrack FLEX:V100 also 
sampling at 100 Hz)  that compute the position of 37 optical 
markers. An SSA procedure is applied to these position 
histories in order to reduce the noise due to the motion capture 
process. 

The process used to guarantee kinematic data consistency 
at position level is explicitly described in [17]. From the 
kinematically consistent data set obtained above, a set of 
independent coordinates z is calculated: the three Cartesian 
coordinates of the proximal pelvis joint, and the three angles of 
each segment with respect to the global frame, defining a total 
of 57 degrees of freedom (DOF). 

Prior to differentiating these configuration histories, the 
SSA filter is applied again to reduce the noise introduced by the 
kinematic consistency processing. Note that since the chosen 
independent coordinates define the position of one point and 
the orientation of each segment, these new histories are also 
kinematically consistent.  

The sample rate of the data collected at the laboratory   
(100 Hz) is not enough to compute forward dynamics, thus, a 
smoother interpolation is required. For this purpose, B-spline 
functions are used. Finally, differentiating these curves, the 
velocity and acceleration of the independent coordinates, z  
and z are determined.  

Multibody Formulation 

There are several procedures to obtain the dynamic 
equations of motion. In this work, the analysis is formulated 
using a multibody dynamics methodology. The equations of 
motion can be expressed using dependent coordinates as: 

 

Td T T

dt

  
     

qΦ λ Q
q q

 

(1) 

where T  is the kinetic energy of the multibody system, Q  is 
the vector of generalized forces and T qΦ λ

 
are the generalized 

forces associated to the Lagrange multipliers λ . The kinetic 
energy can be written as: 

 

1

2
TT  q Mq 

 (2) 

where M  is the mass matrix of the system. Note that using the 
proposed natural coordinates this matrix is constant. Therefore, 
Eq. (1) can be written as: 

 

T qM q Φ λ Q

 

(3) 

The system of equations in Eq. (3) contains n equations, 
where n is the total number of coordinates. The number of 
unknown variables is n m , where m is the number of 
constraints which coincides in turn with the m Lagrange 
multipliers in λ . Therefore, the system can be written as: 

 
 ,

T

t
  
 

qM q Φ λ Q
Φ q 0


 

(4) 

Eq. (4) represents a Differential Algebraic Equation (DAE) 
system with n differential equations and m algebraic equations. 
The strategy to solve this DAE system is based on turning it 
into an Ordinary Differential Equation (ODE) system, since 
there are many well-known methods for its integration. In this 
work, to solve the motion equations a velocity projection 
method proposed in [18] is used. The equations are reduced to 
their state-space form, i.e., their independent coordinates z . 
The time derivative of the constraint equations yields:   

 

 , , 0;t tt     qΦ q q Φ q Φ Φ b  

 

(5) 

The independent velocities z  are chosen from the 
dependent ones q  and a matrix B  can be defined, such that: 

 

z Bq

 

(6) 

Then, using Eqs. (5) and (6), it is obtained that: 

 

   d i d

i
gxm g

         
q qq Φ ΦΦ bqq z0 IB q

 
 

(7) 

where superscripts “d” and “i” indicate dependent and 
independent coordinates respectively, g n m   is the number 
of degrees of freedom and gI

 
is the g g  identity matrix. 

From Eq. (7), it can be deduced that the rows of matrices 

qΦ and B  are linearly independent. Therefore, vector q  can be 
calculated inverting the matrix of the n n  linear system:  
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 
1

    
qΦ bq Sb + RzzB

 
 

(8) 

and identifying terms [19]: 

 

1d d

i

gxm

            
qS ΦS

S 0
 

(9) 

 

1d d i

i

g

             
q qR Φ ΦR

R Ι
 

(10) 

The acceleration equation can be similarly determined:  

 

 , , , ;t tt        q q q qΦ q q q Φ q Φ q Φ 0 Φ q Φ Φ q c         

  
(11) 

Therefore, since B  is constant: 

 

     
qΦ cq zB
 

 

(12) 

 

 
1

    
qΦ cq Sc + RzzB

 
 

(13) 

If an IDA is performed using this formulation, the only 
unknown variable in Eq. (4) is the vector of Lagrange 
multipliers λ , which can be perfectly determined at each time 
instant. In an FDA, motion is not known and Eq. (4) presents 
fewer equations than unknowns, it is an underdetermined 
system. As a result, to determine the motion it is necessary to 
establish the dynamic equilibrium condition that leads to a 
second order differential system. The equations of motion can 
be written as: 

 

  T T   R MRz R Q M Rz Sb Sb  

 

(14) 

 

  Sc Rz Sb Sb 

 

(15) 

and, therefore: 

 

 T T R MRz R Q MSc

 

(16) 

which can be expressed in a compact form as: 

 

Mz Q 

 

(17) 

Eq. (17) is a system of g n m   equations with g 
unknowns, which can be easily solved for the independent 
accelerations z . Vectors z  and z  are obtained by numerical 
integration. There are several numerical algorithms in the 
literature to integrate the equations of motion when they have 
been transformed into a second order ODE system [18]. In this 
work, the well-known trapezoidal rule is used. After that and 
using Eqs. (8) and (13), the dependent variables q , q  and q  

can be calculated. Finally, the Lagrange multipliers (which are 
related to the joint wrenches) can be obtained from Eq. (4). 

RESULTS AND DISCUSSION 

Inverse Dynamics Results 

Using the kinematic information of the whole-body and 
combining the equations of motion of all the segments, the total 
contact forces acting on the system and the torques between the 
ground and each segment can be calculated. Since, during 
walking, the only unknown external forces and torques acting 
on the human body are the foot-ground contact forces, the 
global external wrench can be determined. This total wrench 
corresponds to the actual foot-ground contact wrench during 
the single support phase. However, during the double support 
phase, how this wrench is distributed between the two feet 
cannot be known from kinematic information only. This is 
known as the double support sharing problem or indeterminacy.  

In order to compute the IDA, the double support 
indeterminacy needs to be solved, that is, how the kinetic and 
kinematic information from the laboratory are combined to 
achieve a univocal dynamic solution. To this end, different 
techniques have been proposed in the literature [15, 13, 20–24]. 
Generally, this indeterminacy is overcome by the measurement 
of the individual foot-ground contact wrenches by means of 
force plates [22–24]. However, if two force plate measurements 
are used together with the whole-body kinematic information 
(traditional approach), as said before, the inverse dynamic 
problem becomes overdetermined.  

In this work, in order to preserve the kinematics, the 
Corrected Force Plate (CFP) sharing approach developed by 
the group is applied [13, 20]. This method allows combining 
the force plate data and the markers information to obtain a set 
of dynamically consistent data, with no need either to modify 
the motion or to add residual wrenches. Moreover, the joint 
torques obtained via the IDA have physical meaning and can be 
used to compute the FDA. 

After solving the double support sharing problem using the 
CFP method, all the joint torques are calculated. It has been 
shown that the obtained results present a good correlation when 
compared with other results already published in the literature 
[25]. Figure 2 shows the net torques in the lower limb joints 
(sagittal plane). The dashed line and the grey area correspond 
respectively to the average torque bounded by the standard 
deviation obtained in [25]. The recorded motion contains more 
than one cycle. It covers all instants with force plate 
information available. It starts at the heel strike of the right foot 
(0 % of gait cycle), includes also the next heel strike of the 
same foot (100 %) and finishes at the toe off of the left foot 
belonging to the next cycle (~116 %).  
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Since the methodology applied in [25] uses force plate data 
as input information to compute the IDA, and only two force 
plate devices were available in the lab, the results provide 
information of only one double support of the gait cycle, when 
both feet contact force plates (Note that [25] provides the 
results of the 100 % of a gait cycle separately for each leg, 

therefore two double support phases. However, only one 
double support is common for both legs). In contrast, as the 
CFP method can be applied using only one force plate, Figure 2 
shows ~116 % of a cycle including three complete double 
support phases.   

 

0 20 40 60 80 100
Gait cycle [%]

0 20 40 60 80 100
Gait cycle [%]

Ankle Moment [Nm/kg]

−1,0

0,0

1,0

2,0

Ankle Moment [Nm/kg]

−1,0

0,0

1,0

2,0

0 20 40 60 80 100
Gait cycle [%]

0 20 40 60 80 100
Gait cycle [%]

Knee Moment [Nm/kg]

−1,0

0,0

1,0

2,0
Knee Moment [Nm/kg]

−1,0

0,0

1,0

2,0

0 20 40 60 80 100
Gait cycle [%]

0 20 40 60 80 100
Gait cycle [%]

Hip Moment [Nm/kg]

−1,0

0,0

1,0

2,0

Hip Moment [Nm/kg]

−1,0

0,0

1,0

2,0

Inverse Dynamics Results using CPF
Winter average moment  ± Std. Dev.

Figure 2. Ankle, knee and hip joint torques calculated using the CFP sharing method and comparison with Winter’s results [25].
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Forward Dynamics Results 

The obtained dynamic information can be used as input of 
an FDA to simulate the dynamic response of the human body to 
this particular set of applied forces and torques. In this case, the 
principal objective of the analysis is to predict the movement of 
the multibody system. In an ideal case, the motion obtained 
through FDA using the results of the IDA as inputs should be 
the original motion captured at the laboratory (since our IDA 
results are dynamically consistent). However, in a real 
application, the simulated motion differs from the captured one 
due to errors in the integrator and stability and numerical 
problems 

In a first attempt, the FDA was computed using a time step 
t = 0,01 s. However, using this interval, the multibody system 
became unstable and it was not possible to simulate the entire 
motion. At this point, the IDA needs to be recalculated using a 
smaller time step. The use of spline functions to define the 
motion allows obtaining kinematic information at any instant. 

Therefore, a time step t = 0,001 s is chosen and the IDA 
results are again recalculated.  

The external forces and torques (calculated at t = 0,001 s) 
are used as inputs of the FDA and the resultant motion is 
obtained. Figure 3 shows the joint flexion-extension angles (in 
red) and their actual values (in blue) for the ankle, knee and hip 
joints of both legs. It can be observed that during about the 
90% of the cycle both curves overlap; the two motions are 
similar. However, at the end of the simulation, both curves 
begin to differ and the obtained motion does not correspond to 
normal human gait. Note that using the proposed inverse 
dynamics method; the obtained dynamic results do not contain 
residual torques. The FDA is computed using only external 
torques and forces, without any controller and, still, the results 
shown in Figure 3 are accurate. However, it can be noted that at 
the end of the simulation, the obtained motion differs from the 
original one due to integration errors, and stability and 
numerical problems.  
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Figure 3. Ankle, knee and hip flexion angles (sagittal plane). Reference signals vs. FDA results. 
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In order to improve these results for the whole cycle, a 
proportional derivative (PD) controller is implemented. The 
control unit presents a typical structure of an elementary 
closed-loop system [26]. The controller is implemented in 
discrete time form, and the reference signals (the path that the 
system must follow) are the original time evolution of the 
degrees of freedom refz , that is, the position of the lumbar joint 
and the three angles defining the absolute orientation of each 
segment.  

The error and the error time derivative have the following 
expressions at each instant kt  ( 1, ...,k N , where N is the 
number of time steps of the simulation): 

 

       0; 0ref
k k kt t t t  e z z e

 

(18) 

 

     1k k kd t t t

dt t





e e e

 

(19) 

The controller is implemented and the respective actuators 
are adopted. The actuators have the function of converting the 
position and angular error differences into the corresponding 

generalized forces. There are 3 linear actuators and 54 angular 
ones. Therefore, the controller outputs are the external lumbar 
joint forces and the absolute segment torques that are needed to 
counteract the deviation of the controlled variable z  from the 
prescribed reference refz . 

The proportional gain i
pK  associated with segment i is 

proportional to the mass of the segment im : 

 

i
p p iK K m 

 

(20) 

where 400pK 
 

(  N kg m  or  Nm kg rad depending on 
whether the actuator is linear or rotative, respectively). The 
contribution of the derivative term is proportional (by the value 
of 

i
p dK T ) to the slope of the error over time, i.e., its first 

derivative with respect to time, Eq. (19). In our case, 
52,5·10 sdT  . The values of pK and dT

 
have been chosen in 

order to avoid oscillations and minimize overshoot. Note that 
these values are adjusted by trial-and-error work.  

Once this procedure is implemented, it can be observed 
that the biomechanical model is able to follow the prescribed 

Figure 4. Differences between the reference signal and the signal obtained through FDA using the PD controller: (a) Position differences at lumbar 

joint. (b) and (c) Absolute angle β differences for the thigh, shank, hindfoot and forefoot segments at right and left leg, respectively. 
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motion. During all the analysis, the controlled variables are 
concurrent with the reference variables. Figure 4(a) shows the 
differences between the actual position of the lumbar joint J1 
(captured motion) and the same variable calculated through 
forward dynamics. Similarly, Figures 4(b) and 4(c) show these 
differences for the angle   (angle between each segment and 
the ground in Y direction) of the thigh, shank, hindfoot, and 
forefoot for both, right and left legs, respectively. Figure 4 
depicts a small difference between the two signals ( 78·10 m 
in position and 65·10  rad in angle).  

The biomechanical model followed the used reference, 
leading to the conclusion that this simple control scheme is 
enough to effectively control the biomechanical system during 
gait under a simulated condition. The dynamic effect of the 
controller is a force acting on the lumbar joint (J1) and a set of 
torques acting on each segment.  

As representative magnitudes, Table 1 shows the maximum 
values of the controller force  X,J1F , Y,J1F , Z,J1F  and the 
maximum values of the absolute Y component of the torques 
for the thighs, shanks, hindfeet and forefeet of both legs  RTM , 

RSM , RHFM , RFFM , LTM , LSM , LHFM , LFFM . The table also 
contains the corresponding instant of time when these peaks 
appear (expressed as a percentage of the gait cycle). 
 

Table 1. Maximum dynamic contribution of the PD controller and its 

corresponding instant of time (in % of gait cycle). 

 
F ×10 -3 [N] Gait cycle [%] 

X,J1F   2,977  106,5 

Y,J1F  0,925  50,9 

Z,J1F  4,587  116,4 

M ×10 -3  [Nm] Gait cycle [%] 

RTM  3,808  113,6 

RSM  1,762  113,5 

RHFM  1,025  109,8 

RFFM  0,556  114,4 

LTM  2,586  114,4 

LSM  1,795  112,2 

LHFM  0,997  6,7 

LFFM  0,440  109,8 
 
It can be seen that the dynamic contribution of the PD 

controller is less than 35·10  N and 34·10 Nm. These 
magnitudes are much lower than the range of variation of the 
joint forces and torques for a normal gait, and thus, the 
dynamic contribution of the PD controller is negligible. Note 
that all the peaks appear in double support instants (shadowed 
areas in Figure 3) and most of them at the end of the analyzed 
motion.  

From the obtained results, it can be concluded that the joint 
efforts calculated using forward dynamics (input efforts plus 
controller dynamic contribution) and the ones calculated via an 
IDA are practically equivalent allowing us to validate the 
methodology used to compute the IDA using an FDA approach.  

CONCLUSIONS 
In this work, inverse and forward dynamic analyses have 

been implemented. The comparison between the inverse 
dynamics results and the literature ones is used as a first 
validation of the model. Moreover, the inverse dynamics results 
(obtained using the CFP sharing method) have been used as 
inputs of a forward dynamics problem, obtaining good results 
to simulate up to the 90 % of the gait cycle. 

The FDA allows us to validate the methodology used to 
compute the IDA: The joint torques obtained via the IDA are 
dynamically consistent with the motion, and those torques are 
the actual ones because when they are used to compute an FDA 
they provide a motion extremely close to the captured one 
(without adding neither residual torques nor a controller).  

The instability of the system after the 90 % of the cycle 
can be related to numerical inaccuracies and to errors in the 
integration of the motion equations along time. In order to 
improve the results for the whole captured motion, a simple PD 
controller has been implemented and its dynamic effect is 
shown to be really low, providing a way to easily control the 
biomechanical system during the forward dynamics 
simulations. 

The IDA looks at each discretized instant of time 
separately and the FDA implies the dynamically consistent 
solution of the motion equations over the full recorded period. 
This study shows that if the IDA is computed using a 
dynamically consistent method, the results obtained via the 
IDA can be used to compute a FDA obtaining good results 
along almost the full gait cycle. 

This simple method has been implemented to get 
experience in the field of forward dynamics simulation and it is 
a first step of a future work in human gait prediction. 
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