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Abstract: Localization is one of the fundamental problems in mobile robot navigation. In 
this context, triangulation is used to determine the robot pose from landmarks position 
and angular measurements. The method based on circle intersection is the preferred one 
because it is independent of the robot heading. Nevertheless, it becomes undetermined 
when the robot point is on the circumference that contains the landmarks used. To cope 
with it, a triangulation method based on straight lines intersection is presented in this 
paper. The robot heading angle, which is needed in this method, can be accurately 
determined by means of a geometrical procedure. The accuracy of the presented approach 
is evaluated and compared to that of alternative methods by means of experimental results 
and computer simulations.  Copyright © 2006 IFAC 
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1. INTRODUCTION 

 
Mobile robots are increasingly used in flexible 
manufacturing industry and service environments. 
The main advantage of these vehicles is that they can 
operate autonomously in their workspace. To achieve 
this automation, mobile robots must include a 
localization –or positioning– system in order to 
estimate the robot pose –position and orientation– as 
accurately as possible (Leondes, 2000). In the past 
two decades, a number of different approaches have 
been proposed to solve the localization problem. 
These can be classified into two general groups 
(Borenstein, et al., 1997): relative and absolute 
localization methods.  
 
In relative localization, dead reckoning methods  
–odometry and inertial navigation– are used to 
calculate the robot position and orientation from a 
known initial pose. Odometry is a widely used 
localization method because of its low cost, high 
updating rate, and reasonable short path accuracy. 
However, its unbounded growth of time integration 

errors with the distance travelled by the robot is 
unavoidable and represents a significant 
inconvenience (Kelly, 2004). Several approaches 
have been done to cope with the odometry error 
propagation (Wang, 1988; Tonouchi, et al., 1994). 
 
Conversely, absolute localization methods estimate 
the robot position and orientation by detecting 
distinct features of a known environment. Most of 
the work published integrates a prediction phase, 
based on the odometric data and the robot 
kinematics, and a correction –or estimation– phase 
that takes into account external measurements. The 
most used methods are based on Kalman filtering 
(Leonard and Durrant-Whyte, 1991; Hu and Gu, 
2000; Jensfelt and Christensen, 2001) and Bayesian 
localization (Burgard, et al., 1996; Dellaert, et al., 
1999). Bayesian localization methods are robust to 
complex, dynamic and badly mapped environments, 
but are in general less accurate. Finally, other authors 
deal with absolute localization using bounded-error 
state estimation applying interval analysis such in 
(Kieffer, et al., 2000). 



  

     

The presented localization method uses an extended 
Kalman filter (EKF) to estimate at any time the 
angles –relative to the robot frame– of the straight 
lines from the sensor –a rotating laser scanner in this 
case– to the landmarks used (Font and Batlle, 2005). 
Once the angles are estimated, the presented 
triangulation method based on straight lines 
intersection is used to determine the robot pose.  
 
Several triangulation methods have been presented to 
determine the robot pose. These methods refer to any 
process which solves a system of simultaneous 
algebraic or transcendental equations –whether or not 
they are reducible to an equivalent problem 
involving triangles– (Kelly, 2003). In mobile 
robotics, triangulation occurs often in the context of 
artificial landmarks. However, any natural aspects of 
the environment –such as walls or corners– whose 
positions are known, and are detected by a sensor 
whose indications depend on their position relative to 
the sensor, establish a triangulation context. 
 
In section 2, triangulation methods for mobile robot 
localization and their properties are described. The 
angular state estimator used is also explained in this 
section. Next, in section 3, the proposed triangulation 
approach based on straight lines is presented. Finally, 
in sections 4 and 5, computer simulations and 
experimental results showing the positioning 
accuracy of the presented method are reported. 
 
 
2. TRIANGULATION BASED MOBILE ROBOT 

LOCALIZATION 
 
By means of angular triangulation it is possible to 
determine the robot position and orientation from the 
landmarks position and the measured angles θ1, θ2 
and θ3 –relative to the robot longitudinal axis– for 
three of them (McGillem and Rappaport, 1989; 
Cohen and Koss, 1992) as it can be seen in Fig. 1. As 
the accuracy of triangulation algorithms depends 
upon the point of observation and the landmark 
arrangements, more than three landmarks can also be 
used to improve accuracy (Betke and Gurvits, 1997). 
 
In this paper, a laser positioning system has been 
considered. The main advantage of this system in 
industrial applications is its high positioning 
accuracy which is required in certain practical 
situations such as loading, unloading or narrow 
crossings. The system consists of a rotating laser 
scanner and a group of catadioptric landmarks 
strategically placed.  
 
The scanner emits a rotating laser beam that 
horizontally sweeps the environment and reflects 
back when it detects a landmark Li. The system 
measures the angle θi of the reflected beam, relative 
to the vehicle longitudinal axis (Fig. 1), by means of 
an incremental encoder. For the consistent use of 
triangulation, the angles θi to each landmark must be 
known at the same mobile robot pose. This condition 
is directly fulfilled under robot static condition. 
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Fig. 1. Mobile robot position and orientation can be 

calculated from landmarks position and angles θ1, 
θ2 and θ3 by triangulation. 

 
However, under robot dynamic condition –robot in 
motion– triangulation cannot be directly applied 
because each of the landmarks is detected at a 
different robot pose (Batlle, et al., 2004). The 
following subsection explains the proposed algorithm 
to solve this problem. 
 
 
2.1 Angular state EKF used to allow triangulation 

under robot dynamic condition 
 
To cope with triangulation under dynamic condition, 
an extended Kalman filter is used to estimate at any 
time the relative angles θi, according to the odometric 
evolution of these angles and the laser angular 
measurements. This method, presented in (Font and 
Batlle, 2005), allows the kinematically consistent use 
of triangulation methods. The angular state vector 
used in the proposed EKF is xk = {θ1,k, θ2,k, ..., θN,k }T, 
where N represents the number of viewed landmarks 
(in this case N = 3). The state transition function of 
the proposed EKF describes how the state xk changes 
with time in response to the robot odometric 
measures uk and a noise disturbance wk: 
 

( )1 1 1, ,− − −=k k k kx f x u w .  (1) 
 

The ith file (i = 1, ..., N) of this transition function f, 
–associated to the evolution of angle θi– is obtained 
from the discrete time integration of the time 
evolution of angle θi, which can be expressed as: 
 

sin cosθ θ
θ ψ

ρ
−

= −L i T i
i

i

v v
,       (2) 

 
where variable ρi stands for the distance between the 
scanner center P and landmark Li, vL and vT are the 
longitudinal and transversal components of the 
velocity of P, and ψ  represents the time evolution of 
the robot orientation angle (Fig. 2).  
 
In this approach a forklift type mobile robot has been 
considered (Fig. 2). The kinematical expressions for 
vL, vT and  ψ  with respect to v and γ –velocity of the 
driving wheel center and steering angle respectively– 
which are measured by odometric sensors can be 
found in (Font and Batlle, 2005). 
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Fig. 2. Geometric and kinematical parameters 

considered in equation (2).  
 
The measurement model of the EKF relates the state 
with the external measure zk by means of the 
observation function h: 
 

( ), θ=k k vz h x ,         (3) 
 

where vθ ~ N(0, σθ
2) denotes the measurement noise 

associated to the laser sensor. Note that the external 
measures zk are directly the state of the filter. This 
fact simplifies the required calculations and reduces 
the error associated with the linearization of h. 
 
 
2.2 Triangulation methods for robot localization 
 
Once the relative angles θ1, θ2 and θ3 are optimally 
estimated at any time, a triangulation method can be 
used to determine the robot pose. The one based on 
circle intersection seems to be the best in terms of 
robustness and computation time (Cohen and Koss, 
1992). It determines the robot position as the 
intersection of two circumferences (McGillem and 
Rappaport, 1989), as it can be seen in Fig. 3. 
 
These circumferences are determined from relative 
angles α and β between landmarks, which are 
obtained from θ1, θ2 and θ3. The main advantage of 
this method is that it does not depend on the robot 
orientation. However, it has the drawback of 
becoming undetermined when the laser center P is on 
the circumference that contains the landmarks used.  
 

P

Y

X

ψ

Xp

Yp

L2

L1
L3

αβ

 
Fig. 3. Triangulation method based on circle 

intersection.  

If the robot orientation angle ψ is accurately known, 
triangulation based on straight lines intersection can 
be carried out because the angles of the straight lines 
from point P to each landmark Li are θi + ψ  (i = 1, 2, 
3). In fact, only two landmarks would be necessary 
provided that P is not aligned with them. The use of 
three unaligned landmarks avoids position indeter-
mination regardless of the robot position. 
 
However, if the robot orientation angle is not known, 
triangulation based on straight lines intersection 
cannot be directly applied. Cohen and Koss (1992) 
propose an iterative method that searches for the 
correct robot orientation within the interval (-90º, 
90º) before triangulating. Its main drawback is that 
timing and precision are factors in the algorithm. If 
more accuracy is needed, more iterations are required 
to find the correct orientation, and then the running 
time of the algorithm increases. 
 
 

3. PROPOSED TRIANGULATION METHOD 
BASED ON STRAIGHT LINES INTERSECTION 

 
In this paper, a geometrical method that determines 
the robot correct orientation without performing any 
iteration is presented. Once the orientation is 
estimated, triangulation based on straight lines 
intersection can be performed.  
 
The method starts by intersecting the straight lines 
from each landmark Li with angle θi relative to the X 
axis. If the robot orientation is different from 0º or 
180º the three determined points (O12, O13 and O23) 
are scattered and define a triangle, which is defined 
as the orientation triangle (Fig. 4). 
 
It is obvious that a generic vertex Oij of the 
orientation triangle belongs to the circumference that 
contains P, Li and Lj (Fig. 5). In Fig. 5 Cij represents 
the center of the defined circumference, which can 
also be easily determined because the positions of 
Oij, Li and Lj are known. Taking into account the 
geometry implied, it can be seen that the orientation 
triangle and the triangle with vertexes C12, C13 and 
C23 –called the centers triangle– are similar because 
both of them have the same three angles (Fig. 6). 
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Fig. 4. Performing straight lines intersection using    

angles θi as line absolute angles generates the 
orientation triangle (vertexes O12, O13, O23). 
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Fig. 5. Centers triangle and orientation triangle. 
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Fig. 6. Centers triangle and orientation triangle are 

similar because both have the same three angles. 
 
It is well known that between two similar triangles 
there is a similarity ratio r that indicates the scale 
factor between two corresponding sides of the 
triangles. In the considered problem, it can be found 
that this ratio depends upon the robot orientation 
angle ψ. Taking into account the geometry implied, 
it can be demonstrated that the scale factor r between 
two corresponding sides of both triangles (see Fig. 6) 
can be expressed as: 
 

O O
2sin

C C
ij ik

ij ik

r ψ= = .                (4) 

 
It must be remarked that, if one vertex of the 
orientation triangle cannot be determined because P 
is aligned with two of the landmarks, then the 
similarity ratio r must be calculated by using the 
lengths of the two finite sides of the triangles. Once, 
this ratio r is known, the orientation estimation in 
absolute value can be readily obtained using 
expression (4). 
 
The sign of ψ can be determined by means of the 
orientation angle of one side of the orientation 
triangle with respect to its corresponding side in the 
centers triangle: 90º–|ψ| counterclockwise if ψ > 0 
(Fig. 6); or 90º–|ψ| clockwise if ψ < 0. Therefore, the 

sign of ψ coincides with the sign of the Z component 
of the vectorial product of one side of the centers 
triangle with the corresponding side of the 
orientation triangle: 
 

( )
Z

sign sign C C O Oψ ⎡ ⎤= ∧⎣ ⎦ij ik ij ik .          (5) 

 
The method above only determines angles within the 
interval (-90º, 90º). However, if the real orientation 
angle ψ of the vehicle is within the interval (90º, 
270º), the method can also be used and the solution 
reached by means of it would be 180ºψ ψ= − .  
 
To avoid this indetermination in the robot heading 
angle, information of the robot pose estimation at the 
previous time step k–1 can be used. The difference 
between the estimated orientation by means of the 
geometrical method ψ k , and the previous robot 
orientation ψk–1 can not be greater than a threshold ε 
that depends on the robot kinematics and the time 
between updates. Then, 
 

1

1

180ºψ ψ ε ψ ψ

ψ ψ ε ψ ψ
−

−

− > → = +

− ≤ → =

if

elseif
k k k k

k k k k

.     (6) 

 
Once the orientation of the vehicle at the actual time 
step k is known, triangulation using straight lines 
intersection can be applied. As there is a positioning 
error related to the laser encoder resolution, the three 
positions associated to each pair of landmarks (1-2, 
1-3 and 2-3) are calculated: P12, P13, P23. Then, each 
position estimation Pij is weighted with a factor Wij 
that is inversely proportional to the maximum error 
that can be committed using landmarks Li and Lj 
taking into account the laser scanner measurement 
resolution: 
 

( )sin max ,2α δ=ij ij ij ijW L ,      (7) 
 

where αij = θj – θi, is the bearing angle between 
landmarks Li and Lj, Lij is the distance between these 
landmarks, an δij is the distance from the middle 
point of the segment L Li j  to the observation point.  
 
It is important to note that the geometrical method 
used to determine the robot orientation angle is not 
valid when point P is on the circumference that 
contains the three landmarks, because in this case 
both triangles used reduce to a point. Under this 
transitory circumstance or close to it, the presented 
method relies on robot odometry to estimate the 
orientation angle ψ: 
 

( )1
1 1 1sinψ ψ γ−

− − −
⎡ ⎤= + −⎢ ⎥⎣ ⎦

k
k k k k k

v
t t

L
,         (8) 

 
where variables v, γ  and distance L are defined in 
Fig. 2. Once the orientation is odometrically 
estimated, the weighted straight lines intersection can 
be applied to determine robot position. 



  

     

4. COMPUTER SIMULATIONS 
 
Some computer simulations have been carried out to 
illustrate the accuracy of the presented localization 
method. A realistic model of a forklift mobile robot 
with a tricycle kinematics and the sensors used has 
been created with Simulink 6.1 (included in 
MATLAB). By means of this model it is possible to 
check different localization methods under the same 
environmental and sensor noise conditions.  
 
The simulated robot is provided with a laser scanner 
that rotates at 8 Hz and delivers an accuracy of 0.1 
mrad, and the driving and steering encoders to 
determine the velocity of the driving wheel and its 
steering angle. From these odometric measurements, 
variables vL, vT and ψ  used in the angular state EKF 
can be determined using the kinematical equations 
presented in (Font and Batlle, 2005). 
 
During the simulation the center of the driving-
steering wheel follows a 9.2 m trajectory at 0.5 ms-1. 
This trajectory and the landmark layout are shown in 
Fig. 7. Only three landmarks are seen and the 
scanner center P is forced to cross twice the 
circumference that contains the landmarks. Under 
these conditions, triangulation based on circle 
intersection is not advisable because the positioning 
error greatly increases near this circumference and 
the method is undetermined over it. 
 
The presented approach is also undetermined over 
this circumference because the robot orientation can 
not be determined. However, the odometric 
estimation of ψ close to this circumference allows 
the use of triangulation based on straight lines, 
which has no undetermined positions if three 
unaligned landmarks are used. 
 
Table 1 show the statistical parameters of the lateral 
error elat between the actual robot trajectory and the 
calculated one when using the presented approach 
and triangulation based on circle intersection. The 
first column indicates the root mean square error, 
while the others indicate the mean and the standard 
deviation of the elat absolute value respectively. It 
can be noticed that, under the same conditions, the 
proposed method performs the best accuracy. 
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Fig. 7. Simulated trajectory and landmark layout. 

Table 1 Statistical parameters of the lateral error 
using different triangulation methods 

 
Localization 
method 

RMSE 
elat 

[mm] 

mean 
|elat| 

[mm] 

std dev 
|elat| 

[mm] 

presented method 2.5 1.9 1.6 
circle intersection 4.6 3.3 3.2 

 
 

5. EXPERIMENTAL RESULTS 
 
The method has also been tested on a real forklift 
mobile robot for industrial applications (Fig. 8a). The 
hardware used to support the method is an industrial 
PC (PC104 based) Pentium III clocked at 400 MHz 
on the robot. This PC runs with a real-time operative 
system RT-Linux 3.2. For the odometric and laser 
signals capture, specific firmware implemented by 
FPGA is applied. 
 
The robot navigates through the laboratory shown in 
Fig. 8b, and the same three landmarks (positioned 
with sub-millimeter accuracy) have been used for all 
the configurations. In the experiments the robot has 
been manually guided with a velocity of the driving 
wheel center in the range of 0.14 – 0.18 ms-1.  
 
To validate the accuracy of the presented method, 
some points of the actual robot trajectory have been 
measured using a photogrammetric method based on 
a high resolution camera (Escoda, et al., 2005). The 
lateral error elat between the calculated and the actual 
points is taken as a measure of the accuracy, and both 
methods considered in section 4 are compared under 
realistic laboratory conditions. Table 2 illustrates the 
accuracy obtained by means of these methods.  
 

Table 2 Statistical parameters of the lateral error 
during the experimental validation 

 
Localization 
method 

RMSE 
elat 

[mm] 

mean 
|elat| 

[mm] 

std dev 
|elat| 

[mm] 

presented method 3.1 2.4 2.0 
circle intersection 3.8 3.0 2.4 
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Fig. 8. a) Forklift mobile robot used. b) CAD map of 

the environment and robot trajectory performed. 



  

     

It can be seen from Table 2 that the presented 
method achieves better results than the one based on 
circle intersection. This is because it performs better 
near the circumference that contains the three 
landmarks.  
 
During the experimental validation, a maximum 
lateral error of 7 mm –between the actual and the 
calculated points– has been obtained when using the 
presented method, while 9.3 mm has been the 
maximum error using triangulation based on circle 
intersection.  

 
 

6. CONCLUSIONS 
 
In this paper, a triangulation method based on 
straight lines intersection has been presented. This 
method accurately determines the required robot 
orientation angle using a geometrical procedure. To 
allow the kinematically consistent use of 
triangulation under robot dynamic condition –robot 
in motion–, an extended Kalman filter is used to 
estimate at each time step the angles –relative to 
robot longitudinal axis– of the straight lines from a 
laser sensor to each landmark.  
 
An advantage of the presented approach is that the 
indetermination of robot position when the laser 
scanner center P is on the circumference that 
contains the three landmarks used, can be 
conveniently solved. As indetermination in this case 
is associated with orientation indetermination, it can 
be solved using the odometric estimation of the robot 
orientation when P is close to this circumference. 
 
The presented approach has been compared to the 
usual triangulation method –based on circle 
intersection– by means of computer simulations and 
by means of experiments using a real forklift 
prototype. In both, computer simulations and real 
experiments, the presented method has turned out to 
be the best in terms of localization accuracy. 
 
In the future, this method can be improved by using 
more than three landmarks. 
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