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Abstract—Mechanical systems with time-varying topology appear
frequently in various applications. The nature of topology transition
is a key characteristic in the performance of such systems. In this
paper, a concept to decouple kinematic and kinetic quantities at the
time of topology transition is used. This approach relies on the use of
impulsive bilateral constraints and it is a useful tool for the analysis
of energy redistribution and velocity change when these constraints
are suddenly established. Based on this concept, two examples of
systems with time-varying topology are analyzed: a bipedal walking
system and a dual-pantograph robotic prototype interacting with a
stiff environment. Detailed numerical and experimental analysis to
gain insight into the dynamics and energetics of topology transitions
is presented.

Index Terms—Kinematics and Dynamics of Reconfiguration, Re-
configurable Robots, Various Topology Modeling.

1. INTRODUCTION

Variable topology mechanical systems are present in various
fields of research such as robotics, biomechanics or mechanism
science. The dynamic analysis of such systems depends on the
time-varying nature of the connections between the elements
of the system and the environment. This complicates the
analysis because in most cases a different dynamic model must
be developed for each constraint condition.

Different situations can be found depending on how these
connections are established. For example, one possibility is
that the number of degrees of freedom of the system decreases
due to the development of certain “new” connections with
other objects or the environment. This is the case of the
grasping/capturing of a moving payload, or also the interaction
of two robotic mechanisms. The effect of mass capture on
flexible multibody systems was studied in [1] and [2].

A second possibility appears when at the same time of es-
tablishing new connections, other previous constraints become
passive. In such a case, the number of degrees of freedom may
vary or stay the same depending on the specific constraints.
An example for this situation can be found in the analysis
of (active/passive) dynamic walking machines [3]. In those
systems, the heel strike event represents a sudden change of
topology where some constraints are imposed on the foot that
makes contact with the ground, and other are released from
the foot that lifts up [4], [5].

Discontinuous constraints have been a known concept in
analytical mechanics [6], [7], [8]. As discussed before, two
particular cases of such discontinuous constraint configura-
tions can be the sudden removal and the sudden addition of
constraints. The sudden removal of constraints alone does not
instantaneously change the energy and momentum distribution
of the system unless other impulsive forces (applied or con-
straint forces) are present. The sudden addition of constraints
does cause instantaneous changes. Therefore, the truly critical
event during the motion of variable topology systems is when
physical connections are established. Such an event can be
characterized by inert constraints which are a class of bilateral
impulsive constraints [6], [7], [8].

This work focuses on this event and particularly on the
effects of the system state (configuration and velocities)
on various dynamic aspects of the transition. The dynamic
analysis conducted in this work is based on an analytical
approach that allows a complete decomposition of the dynamic
equations and the kinetic energy to two subspaces of the
tangent space of the system, i.e., the spaces of constrained and
admissible motions [9]. It will be shown that this approach is
useful to better understand topology-varying systems and get
insight into their dynamic behaviour during contact.

Two situations that can be characterized by means of inert
constraints are studied in this paper. We focus first on the heel
strike event of bipedal locomotion. This is a relevant event
because it represents the main cause of energy consumption
during the gait cycle [5]. Furthermore, it plays an important
role to guarantee the cyclic stability of the motion. Different
dynamic aspects of the heel strike are analyzed, paying special
attention on the energy redistribution during topology transi-
tion. The magnitude of the contact impulses developed on the
foot are also calculated for different configurations and design
parameters of the system.

The second example studied in the paper is the case of
a robotic multibody system that makes contact with a stiff
environment. An experimental testbed consisting of two dual-
pantograph devices is used for that purpose. By means of
it, detailed experimental analysis is carried out to illustrate
different concepts introduced in this work.



2. DYNAMICS FORMULATION

Let us consider that the configuration of the system can be
described by n generalized coordinates that are represented by
the n x 1 dimensional array q. The time derivatives of these
coordinates g give a possible set of generalized velocities of
the system. We will consider that (q, ) represents a minimum
set of generalized coordinates and velocities with respect to the
continuous constraints imposed on the system. In this paper,
we will primarily consider systems where the kinetic energy
can be expressed as a quadratic function of the generalized

velocities )

T = 54" Mg, )
where M(q) is the n x n mass matrix of the system. The
dynamic equations of motion of such a multibody system can

generally be written as
Mij+c+u:fA+fR—|—fN, 2)

where c(q, q) represents the Coriolis and centrifugal effects,
u(q) is the negative of the generalized conservative forces,
fa and fr are the generalized applied and constraint forces
respectively, and fy represents generalized non-ideal forces
that may arise due to the non-ideal realization of constraints.
Let us consider that ¢; represents the time point when certain
constraints are suddenly established and, as a result, the topol-
ogy of the system changes. This sudden addition/imposition
of physical restrictions on the system motion can be modeled
by means of inert constraints [6], [8]. The event of topology
transition takes place in the [t;, tj'] interval, where ¢; and
t;r represent the so-called pre- and post-event instants. The
duration of this interval can usually be considered very short
on the characteristic time scale of the finite (continuous)
motion of the system. Therefore, the configuration of the
system is assumed to remain unchanged during [t , t;"], and
the event of topology change is analyzed as an impulsive
motion event. Inert constraints can normally be written as

Agqt =0, A3)

where ¢ stands for ¢ at tj, and A is the m x n dimensional
constraint Jacobian. These can generally be considered as im-
pulsive non-holonomic constraints [6], [8], and they represent
the required topology at t; at the velocity level.

Two typical situations may arise depending on whether the
new constraints persist for a finite period of time or they
represent only an instantaneous situation. One example for the
first situation appears in bipedal locomotion when the swing
leg makes contact with the ground at heel strike. This will be
analyzed in Section 4. For the second situation, an example
can be the general consideration of low velocity impact
between two bodies when the duration of the impact “looks”
instantaneous on the characteristic time scale determined by
the finite motion of the system. Such impact can be divided to
two phases (namely, compression and restitution phases) and
the system configuration is usually assumed constant during
the whole event. The compression phase can be modeled with

constraints of the form of Eq. (3), where q+ represents the
generalized velocities at the end of compression when the
relative normal velocity of the contact points is zero. This
case will be experimentally analyzed in Section 6.

2.1. Dynamics Decomposition

The tangent space of the dynamic system can be seen as an
n dimensional linear space interpreted for each configuration
[10], [11]. Since the configuration of the system can be as-
sumed constant in [t;, ], a single interpretation of this linear
space may be used for both ¢; and t;. The inert constraints
and their Jacobian A can be employed to decompose this
tangent space to the space of constrained motion (SCM) and
space of admissible motion (SAM) [9].

The above two subspaces can be defined so that they are
orthogonal to each other with respect to the mass metric
of the tangent space [9], [12]. In this case, any impulsive
event characterized by ideal inert constraints of the form
of Eq. (3) will influence quantities in the SCM leaving the
SAM unaffected. However, non-ideal effects, such as friction,
can couple the two subspaces and develop an influence on
the admissible motion dynamics too. The decomposition to
the two subspaces can be accomplished using two projection
operators [9], [12]. The projectors associated with the SCM
and the SAM can be respectively written as

P, — M A7 (AM—lAT) A )

-1
P,=1-P,=1-M AT (AM—lAT) A (5)

where I is the n X n identity matrix. The mathematical
derivation for these projectors can be found in [11], [9]. It can
be seen that the projectors above satisfy that PaTMPC =0,
where 0 denotes the n X n zero matrix, which shows the
orthogonality of P. and P, with respect to the mass matrix.

Using the above operators, the generalized velocities of the
system can be decomposed as

q=v.+ve=Pcqg+Puq, (6)

which represent the two components associated with the sub-
spaces. It is interesting to note that v, = P.q and v, = P,q
are generally non-holonomic components. Based on Eq. (6),
it can be seen that the kinetic energy can be decomposed as

1 1
T=T.,4+T, = ichMvc + gv:‘vam (7)

which represents a complete decoupling of 7' [9], [12]. To
obtain Eq. (7) it was used that v/ Mv,. = 0, which is a
direct consequence of the orthogonality of the projectors with
respect to M. Any vector of generalized forces or generalized
impulses can also be decomposed using the transpose of P,
and P, as

f=f.+f, =P/ f+Pf, (8)

and S ~ -
f=f.+f,=PI'f+PIf, )

where f is the impulse of f. It is also possible to show that

fPM'f. =0 and f'aTMflf'c = 0 hold for the general case.



3. DYNAMICS AND ENERGETICS OF TOPOLOGY
CHANGE

The dynamics of the instantaneous imposition of constraints
can be characterized by impulse-momentum level dynamic
equations. Based on Egs. (1) and (2), these can be obtained
in a general form as [13], [8]

or1t h =
94 =M(q"-q ) =fa+fr+fn, (10)

[T

where and “+” denote the pre- and post-event instants,
f4, fr and fy are the impulses of the generalized applied,
constraint, and non-ideal forces, and [8T/8(:1]ir = —f; is
the negative of the impulse of the generalized inertial forces
according to principle of virtual work. If the applied forces are
non-impulsive, then f 4 = 0. This is the case we will study in
more detail to gain insight into the effect of inert constraints
representing the topology change. As it was discussed earlier,
the only impulsive constraint forces are associated with the
inert constraints. For now we will also assume that these
constraints are realized in an ideal way, i.e., fy = 0.
The impulsive constraint forces responsible for the topology
change can be written as

fr=ATX Y

where X represents the impulse of the contact forces developed
during this event and A is the Jacobian in Eq. (3).

Based on the decompositions introduced in Section 2.1, the
impulsive dynamic equations provided in Eq. (10) can also be
decoupled. The dynamic equations associated with the SCM
and the SAM can be respectively expressed as

+
B‘jﬂ =M (v) —v;)=A"X, (12)
+
[gﬂ —M(vi—vo) =0 (13)

Egs. (12) and (13) provide useful information to analyze
the dynamics of topology transition for the case of ideal
constraints. First of all, it can be seen that constraint impulses
fr are fully projected to the space of constrained motion.
Based on Eq. (13) and taking into account that M is invertible,
it can be easily seen that v} = v . Hence, based on Eq. (7)
one can conclude that the kinetic energy of the SAM is the
same before and after the topology transition, 7,- = T, .

Also, based on Egs. (12), (3) and (6) it can be concluded
that v* = 0. This implies that no matter how much kinetic
energy is contained in the SCM at the pre-event time, this will
be completely “lost” during topology transition since 7,7 = 0.

The last considerations can be useful to gain insight into
energetic aspects of the sudden change of topology. During
interval [t;, t;], the constraint impulses on the system will
change only 7, while leaving 7, unaffected. The kinetic
energy decomposition at pre-impact time, T~ =T + T,
provides the energetic balance of the whole event since T,
is the part of the energy that will be lost and 7,” will not be

modified and will remain in the system after the transition.

Therefore, at time instant ¢; we have that 7" = T, which

is less or equal to T~ according to Carnot’s theorem [6].
Based on Eq. (12) and the fact that v;r = 0, we obtain that

—Mv, = AT (14)

Also, considering that v}" = 0, we can solve for the post-
event generalized velocities ¢ as

g =vli=v, =P.q . (15)
The solution for the constraint impulse A can be found based
on Egs. (6) and (14). It yields the following expression

A= — (AlvrlAT)_1 Av:. (16)

Finally, based on Egs. (6), (7) and (14), and using that
vIMv, =0, it is possible to write that

—(@)™v; = 217 = (¢ )TAT X, (17)

which shows that for a given pre-event velocity, the impulse of
the constraint forces is proportional to the pre-event 7. . This
makes it possible to express an explicit relationship between
the impulses generated by the topology change and the kinetic
energy content that is lost in the event.

4. EXAMPLE 1: BIPEDAL LOCOMOTION

An interesting example of systems with time-varying topol-
ogy are bipedal walking systems. The event that represents
such change of topology is the heel strike, when constraints
on the swing foot are suddenly established. The constraint
configuration imposes that this foot stays in contact with the
ground without slipping after heel strike, i.e., the velocity of
the contact point P is zero at the post-event time. This is the
desired situation in walking motion, which can be expressed
by inert constraints of the form of Eq. (3) as v, = Agt =o.
After this event, the swing foot changes its role and becomes
the stance foot of the next step.

The other foot also undergoes a transition at heel strike.
Two different situations may arise depending on whether this
foot stays or not in contact with the ground after heel strike. If
the foot stays in contact with the ground, then a finite double-
support phase appears right after the heel strike where the
system has less degrees of freedom than before. This is the
case of human locomotion. The other possibility is that the pre-
impact stance foot instantaneously lifts up after heel strike,
then constraints on this foot are suddenly removed, and the
total number of degrees of freedom of the system stays the
same (although constraints have changed). This is the case of
a number of dynamic walking systems both active or actuated.

We will analyze here the heel strike event of a compass
walker with circular feet and an upper body (torso). This
system is shown in Fig. 1. It consists of two identical legs
of length | and mass m. The center of mass (COM) of each
leg is at a distance b from the hip. The radius of the feet
is R and the hip is modeled as a point mass my located at
the revolute joint between the legs. The torso is included as
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Fig. 1. Dynamic model of the compass walker with upper body

a third link that can rotate about the hip with mass my and
the center of mass located at a distance {7 from the hip. The
value of the fixed parameters is given in Table I. We define two
dimensionless parameters which will be varied to investigate
its dynamic effects. These are p = % which establishes a
relationship between the foot radius and the length of the
leg, and p = ’2%, which accounts for the mass distribution

between upper and lower body.

The configuration of this system can be described by the 5
generalized coordinates shown in Fig. 1. These define the 5 x 1
dimensional array q. Coordinates g; and ¢ indicate the (z,y)-
position of the center of the stance foot. Angles ¢3, q4 and g5
indicate the absolute orientation of the stance leg, the swing
leg and the upper body, respectively. The time derivatives of
these coordinates define the vector of generalized velocities q.

For the system at hand, we obtained the mass matrix M and
the Jacobian A associated with the constraints established at
heel strike. Based on them, the projectors P, and P, were
determined to calculate the kinetic energy decomposition and
the impulses developed on the contact point A = [\; \,]T.

The dynamics analysis of topology change is based on the
pre-impact velocities g~ . To obtain this vector the following
assumptions were made for the pre-impact kinematics: (1) the
stance foot rolls over the ground without slipping, ¢; = R¢3
and ¢, = 0, (2) the upper body does not rotate with respect
to the absolute inertial frame, ¢; = 0, and (3) both legs rotate
with an angular velocity of 1 rad/s with respect to the absolute
inertial frame, ¢; = ¢, = 1 rad/s. The previous values of ¢;
and ¢, are typical for compass-gait walkers [14], [15].

TABLE I
PARAMETERS OF THE COMPASS-GAIT WALKER

Parameter  Value Description
myy 30 kg  Total mass of the walking system
Mg 10 kg  Mass of the hip
l 0.8 m  Length of the leg (I = a + b)
b 0.4 m  Position of the COM of the leg
lr 0.4 m  Position of the COM of the torso

4.1. Effects of Lower Body Configuration and Feet Radius

In this section, we study the influence of one design
parameter, radius R, and the angle 6 between legs on two
dynamic aspects of the heel strike transition: the energetic
balance and the impulses developed on the foot. Note that
angle 6 = 2qs at heel strike. We consider the following interval
of possible angles: § = [10°, 60°]. As for the configuration of
the upper body, we assume that it is placed perpendicular to
the ground, i.e., g5 = 0°. The effect of the foot radius design
is analyzed considering the following values of p: 0, 0.25, and
0.5. The parameter representing the mass distribution is u = 1.

Figs. 2 and 3 represent, respectively, the kinetic energy
decomposition at the pre-event time and the magnitude of
impulses developed as a function of @ for the considered values
of p. The pre-event energy decomposition is useful because it
indicates the energy which will be lost during topology change
(T7") and the energy that will remain in the system (7).

Based on Fig. 2, it can be concluded that both the foot
radius and the angle between legs have an important effect on
the energy redistribution at heel strike. Since T~ is the energy
that will be lost to establish the new constraint condition, it can
be clearly seen that the larger the foot radius is, the lower the
energetic losses are at heel strike. Also, for a given foot radius,
a low interleg angle 6 provides lower energetic losses. This can
provide guidelines for design and gait synthesis to minimize
the energy consumption of humanoid robots. It can be seen
that a point-feet walker (p = 0) is clearly less efficient than a
circular-feet walker (p > 0), which is in complete agreement
with [16] and [17]. In Fig. 2 the curve for p = 0 does not
cover all the range of angles because for # > 43° the stance
foot does not lift up from the ground after heel strike and,
therefore, walking motion cannot be obtained.

Regarding the contact impulses ), (normal direction) and
\; (tangential direction), Fig. 3 shows that both of them grow
with 6 and decrease with p. The point-feet walker (p = 0) is
the one that yields higher impulses for a given 6 (in both
directions). As it was deduced from Eq. (17) the impulse
vector A and T are related to each other, therefore, high
contact impulses are obtained when T is also high. This is
in agreement with the results shown in Figs. 2 and 3.

Fig. 2. Kinetic energy decomposition at ¢; as a function of 6, p
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Fig. 3. Impulses developed at heel strike as a function of 6, p

4.2. Effects of Upper Body Configuration and Mass Dis-
tribution

In this section, we analyze how the upper body configuration
and the walker mass distribution affect the dynamics of heel
strike. For this purpose, we study impacts for a usual interleg
angle § = 40°, and a fixed foot radius R = 0.25[. The
influence of the configuration of the upper body is analyzed
by varying angle g5 within the range [—20°, 20°]. That is,
configurations between upper body leaning backward aligned
with the front leg (g5 = —20°) and upper body leaning
forward aligned with the rear leg (g5 = 20°). As for the mass
distribution, its effects are studied by considering the following
values of p: 0.1, 1, and 10.

Figs. 4 and 5 represent the kinetic energy decomposition
at the pre-event time and the magnitude of the developed
impulses as a function of ¢5 for the considered values of p.
Several conclusions can be drawn from the results plotted in
Fig. 4. First of all, it can be seen that a body posture with the
torso leaning forward (g5 > 0°) is better to reduce the energy
loss (lower T."). Such an angle also increases 7,”, which is the
energy that will stay in the system after topology transition.

The mass distribution of the walker (parameterized with 1)
has different consequences depending on the torso angle. It can
be seen that for negative g5 a low value p is better to reduce
energy losses, whereas for positive g5 a high value of 1 works
better in terms of energetic efficiency. In general, it is better
to synthesize gaits with the torso leaning forward (g5 > 0°),
and to design robots with the mass more concentrated in the
upper body than in the legs (> 1) to obtain less consuming
heel strike transitions. As before, comparing Figs. 4 and 5 the
magnitude of the contact impulses is completely correlated
with T, Therefore, the last considerations given to reduce
energy losses also hold if we want to obtain lower impulses.

5. NON-IDEAL CONSTRAINT REALIZATION

If we consider non-ideal inert constraints, then f does not
disappear in Eq. (10). However, the kinetic energy decom-
position expressed in Eq. (7) holds in the same form. The
impulses of the generalized non-ideal forces can usually be
expressed with force laws such as fy = fx (X, d,q). They
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Fig. 4. Kinetic energy decomposition at ¢, as a function of gs, p
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Fig. 5. Impulses developed at heel strike as a function of gs,

can then be projected to the subspaces and included in the
impulsive dynamic equations of the SCM and SAM as Pff' N
and PZf'N, respectively. It can also be shown that for the
SCM the associated generalized impulse component can be
expressed as PXfy = ATA, where A = A(X,q,q) is an
m X 1 dimensional array giving the local parameterization of
the non-ideal forces in the SCM [9].

With these considerations the impulsive dynamics equations

of the SCM and SAM, Egs. (12) and (13), can be rewritten as

+
[gﬂ =M(vi—vy)=AT(A+A), (19
+
[gfa] =M (v -v,)=Plfy. (19)

Based on them and Egs. (3) and (6), we can again write
that vj = 0. And, therefore, using Eq. (18) we obtain that

~Mv, =AT(A+A), (20)

where we need to consider that A can generally be expressed
as a function of \, therefore, this constraint dynamics equation
should be solved for X\, which may then be used to evaluate
fn. This is needed for the admissible motion dynamics
described by Eq. (19). As we did before, based on Egs. (6),

(7) and (20) it is also possible to write that
—(g)"™Mv; = 277 = (q7)TAT(A + A), 1)



which shows that even for the case of non-ideal constraint
realization, the impulse of the generalized forces developed
due to the imposition of the constraints is proportional to the
pre-event kinetic energy of the SCM, T, which is completely
lost since v = 0. From Eq. (19) it can be seen that the
expressions g7 =v} =v, and T+ =T} =T, will not
hold for the case of non-ideal impulsive constraints. The
kinetic energy of admissible motion 7}, will also change during
transition as a result of the inert constraints.

6. EXAMPLE 2: EXPERIMENTAL ANALYSIS OF IMPACT

An experimental testbed based on two dual-pantograph
devices has been used to investigate the presented con-
cepts, Fig. 6. Each device is equipped with high-resolution
force/torque sensors at the tip and optical encoders at the motor
joints. For this study, one of these devices (passive device)
emulates a stiff environment with a flat surface and the other
(active device) comes to a contact interaction with the passive
one at one single contact point. An interface with a conical
shape is mounted onto the end effector of the active device
to ensure point contact with the flat end plate of the passive
system. The compression phase of this interaction represents a
topology transition that can be modeled with inert constraints.

Although a single device can move the end effector with
the 6-DOF of general 3D motion, the trajectories performed
have been programmed so that the motion of the system can
be considered planar. The planes of the two pantographs are
parallel so they can be considered with one single “composite”
pantograph model, see Fig. 7. In this figure, angles g; denote
the absolute orientation of the ith link (7 = 1,2, 3,4) of the
pantograph. Regarding the parameters, [; and a; represent the
length and the position of the center of mass of the ith link,
m; and I; denote its mass and moment of inertia about its
center of mass, and mgg denotes the mass of the end effector.
Parameter [5 indicates the distance between the two actuation
motors. The value of these parameters can be found in Table II.

For planar motion, the system can be considered as a 2-DOF
mechanism and the actuated joint coordinates q = [q; q3]”
and their time derivatives q may be used as independent
generalized coordinates and velocities, respectively. Using this

passive device"
242

.

active device
= : )
R

Fig. 6. Experimental setup using two dual-pantograph devices

TABLE II
PARAMETERS OF THE PANTOGRAPH

Parameter  Value Description

11, 13 0.1449 m Length of links 1 and 3

lo, Iy 0.1984 m Length of links 2 and 4

ai, a3 0.0519 m Position of the COM of links 1 and 3
a2, a4 0.1081 m Position of the COM of links 2 and 4
ls 0.0445 m Distance between axes of actuated joints
mi, ms 0.1202 kg Mass of links 1 and 3

mao, My 0.1084 kg Mass of links 2 and 4

MEE 0.3144 kg Mass of the end effector

11, I3 0.0004 kgm2 Moment of inertia of links 1 and 3
Io, Iy 0.0007 kgm2 Moment of inertia of links 2 and 4

representation, the mass matrix M and the Jacobian A have
been determined. Since in the experiments the flat end plate
of the passive device has a normal parallel to the y axis, the
topology transition can be represented with one inert constraint
that describes the sudden imposition of the physical contact
constraint on the end point velocity of the active device along
the y direction. Therefore, yg B = Agqt =o.

We have developed experiments to test the influence of the
system configuration and velocities on the dynamics of the
topology transition. Two different configurations have been
studied which are shown in Fig. 8. These will be termed
“symmetric configuration” and “asymmetric configuration”,
according to the figure. For each case, different situations have
been tested by varying the angle v of the pre-event velocity
vector of the end effector, v, = [x}_; 5 Vg E]T, with respect
to the direction normal to the contact plane.

An interesting measure that will be used in next sections
is the ratio £ between the pre-event kinetic energy associated
with the SCM (which is lost) and the total pre-event kinetic
energy of the system. This can be expressed as

e Lo _ (@)TP MPg
T @) ™Ma

and gives information on what part of the initial kinetic energy

is required to develop the constraints. £ has two extreme values

(0 and 1) which are associated with different directions of the

tangent space of the system. These directions can be obtained
via the formulation of an eigenvalue problem [18].

) (22)

Fig. 7. Planar dynamic model of the pantograph
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Fig. 8. Contact configurations considered in the experiments

6.1. Results for Symmetric Configuration

For the configuration shown in Fig. 8.a we have performed
four sets of experiments where the end point of the active de-
vice impacts the flat end plate of the passive one with different
velocities (cases 1 to 4). These are shown in Table III, where
v denotes the angle of the pre-event end point velocity. The
magnitudes of these velocity vectors have been determined
such that the total pre-event kinetic energy of the system is
the same for each case, T~ = 0.01J. The table also shows
the expected T, T, , and £ = T, /T~. As it can be seen
~v = 0° corresponds to £ = 1, i.e., the situation for which all
the pre-impact kinetic energy is associated with the SCM.

For each pre-event velocity, the experiment has been per-
formed several times and the measured results averaged. Fig. 9
shows the results of the kinetic energy decomposition (7. and
T,) for one individual impact corresponding to each case. The
white spots in the plots indicate the values of T, and T, at
t; (just before contact) and ¢ (end of compression). Note
that the obtained value of T at ¢ is zero in all cases, this
represents the instant when the inert constraint is established.

Table IV shows the results for the important quantities
based on the four sets of experiments, i.e., the kinetic energy
decomposition, the ratio £, and the measured impulses F,, and
F; at the tip of the active device (the impulses are defined
positive with the sense indicated in Fig. 8). The impulses
are determined by numerical integration of the force mea-
surements over the impact interval. Impulse F, is associated
with the inert constraint, whereas F} appears due to non-ideal
effects, such as friction, along the tangential direction.

It can be first observed that the results in Table IV are in
very good agreement with the analytical and computational
predictions of Table III, considering that some uncertainties
are always present in experimental settings (e.g., in parameter

TABLE II1
COMPUTATIONS FOR THE FOUR CONSIDERED VELOCITIES
Case 5y Vgl (mfs)  T: (m)) T, (m)) £
1 0° 0.1974 10 0 1
2 15° 0.1975 9.34 0.66 0.93
3 30° 0.1978 7.53 2.47 0.75
4 45° 0.1981 5.03 4.97 0.50

TABLE IV
EXPERIMENTAL RESULTS FOR THE FOUR CASES (1-4)

T (m)) T, (m)) T (ml) I3 F, (N-ms) F; (N-ms)
1 9.844 0.010 0.012 1.00 120.53 0.61
2 9.374 0.706 0.519 0.93 107.85 -2.07
3 7.553 2.621 1.987 0.74 101.95 -4.26
4 5.026 5.270 4.443 0.49 82.00 -5.47

values). It can also be seen that there is a clear correlation
between the magnitude of the constraint impulse £}, and that
of T,”. The maximum impulse is obtained for case 1 when all
the pre-impact kinetic energy is associated with the SCM, i.e.,
when ¢ = 1. It can be seen that T, changes its value between
time points ¢, and ¢; because the tangential impulse F; affects
the dynamics of the SAM. However, one can notice that T},
is much less affected than 7. by the topology transition. Note
that the change in T}, is related to the magnitude of F;.

For case 1 the tangential impulse is low and, therefore, the
value of T, is almost unchanged during topology transition.
This can be observed in the top-left plot of Fig. 9. In this
case, the tip of the active device has no tangential component
of velocity at time t; (since v = 0°) and low frictional
effects appear during compression. For cases 2 to 4, tangential
impulses are larger because the velocity of the tip at the
instant of impact ¢; has tangential component and, therefore,
frictional forces appear during the contact onset. In fact, in
these cases ¥, > 0 and, since friction forces are opposed to
the slipping velocity, this yields negative tangential impulses.

6.2. Results for Asymmetric Configuration

We have performed five sets of experiments for the asym-
metric configuration shown in Fig. 8.b (cases 5 to 9). The
velocities and expected values of 7, T, and £ are shown
in Table V. The magnitudes of the velocities have been
determined imposing that 7~ = 0.01J. As before, each
experiment has been performed several times and the results
averaged. The results for the kinetic energy decomposition
during one individual impact are shown in Fig. 10.

It must be noted that for this “asymmetric” configuration
& = 1 does not correspond to an impact with the velocity of the
tip aligned with the constrained direction. Using the technique
reported in [18], it is obtained that for this configuration
& =1 (e, T = T) is achieved when the end point
velocity vector v, forms an angle v = —7.58° with respect
to the constrained direction. Since this angle is interpreted
positive as shown in Fig. 8, the negative sign means that it

TABLE V

COMPUTATIONS FOR THE FIVE CONSIDERED VELOCITIES
Case 7 |vppllaws) T @) To ) ¢

5 —7.58° 0.1955 10 0 1

6 0° 0.1921 9.82 0.18 0.98

7 15° 0.1857 8.57 1.43 0.86

8 30° 0.1812 6.56 3.44 0.66

9 45° 0.1794 4.28 5.72 0.43
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is measured counterclockwise. The other cases correspond to
impact velocities with the same angles v considered before.

Table VI shows the actual measured quantities of the kinetic
energy decomposition, the ratio £, and the measured impulses
F,, and F,. These results are in very good agreement with the
previous computations in Table V. Several conclusions can
be drawn from them. First of all, we find that the maximum
constraint impulse is observed for the case of maximum ratio
& (case 5). Hence, T is a good indicator of the magnitude
of the constraint forces generated during the transition. As it
can be observed, there is a clear correlation between 7 and
F,. This is theoretically supported by Eq. (21).

We believe that this result is not obvious at all. Without
performing any analysis one might expect the most intense
contact impulses when the end point velocity is fully aligned
with the constrained direction (v = 0°). However, we have
shown here that this is not generally true in complex multibody
systems such as the one considered in this work. It can also be
noticed that in general T, # T, due to non-ideal phenomena
(e.g., friction) represented by impulse F}. Note that the largest
change in Ty, is obtained for case 9 which is the one with the

TABLE VI
EXPERIMENTAL RESULTS FOR THE FIVE CASES (5-9)

TS (m)) T, md) T, (m)) I3 F, (N-ms) F; (N-ms)
5 9.937 0.001 0.006 1.00 109.57 1.28
6 9.482 0.273 0.223 0.97 105.93 1.40
7 8.506 1.498 1.462 0.85 101.26 0.05
8 6.531 3.490 3.017 0.65 84.97 -2.10
9 4.472 5.693 4.949 0.44 65.17 -2.60
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Kinetic energy decomposition T¢, T, during one individual experiment for cases 1-4 (symmetric configuration)

highest tangential impulse. This change can be observed in the
corresponding plot of Fig. 10. In cases 5 to 7 the change in 7T},
is smaller due to lower impulses in the tangential direction.

We will discuss now the sign of impulse F;. The positive
sign for case 5 can be explained because at pre-impact time
Tpr < 0 (since v < 0°) and, therefore, frictional effects
are mostly in the opposite sense. Case 6 is not that obvious
since for this case we have that @5, = 0, however, the fact
that F; = 1.40 N-ms implies that there is slipping towards
the negative direction of the x axis during the contact onset.
In case 7, the measured tangential impulse is positive and
almost zero. One could expect a negative value of such impulse
because @, > 0, however, the measured value implies that
slip reversal takes place during interval [t; , ¢;]. For cases 8
and 9, the tangential impulse takes the expected negative sign.

Finally, it must be mentioned that the way kinetic energy
is distributed between the SCM and the SAM (before the
impact) depends not only on the orientation of the end point
velocity relative to the constrained direction, but also on the
system configuration at topology change. As it can be observed
in Figs. 9 (symmetric configuration) and 10 (asymmetric
configuration), the ratio between 7. and 7, for a given value
of ~ varies depending on the configuration of the system.

7. CONCLUSION

In this paper we developed a method for the dynamic
analysis of variable topology mechanical systems based on
the concept of bilateral impulsive constraints. The Jacobian of
these constraints can be used to define subspaces of the tangent
space of the system, which are termed “space of constrained
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motion” and “space of admissible motion”. Based on this
concept, we completely decoupled the kinetic energy of the
system and the impulsive dynamic equations characterizing
the event of topology transition. We showed that the pre-event
decomposition of the kinetic energy gives useful information
on how energy will be redistributed to establish the constraints.
We also showed that the energy content in the space of
constrained motion has a correlation with the magnitude of
the contact impulses generated, both for the case of ideal or
non-ideal constraints.

To illustrate the usefulness of the presented concepts two
situations that may be characterized with impulsive constraints
of that class were studied. First, we analyzed the dynamics of
the heel strike event in bipedal locomotion. The kinetic energy
redistribution and the impulses on the foot generated during
such event were obtained as functions of design parameters
and the biped configuration. The analysis carried out provided
results that can be useful for control and design of biped
robots. We also performed a thorough experimental study
of impact using an instrumented robotic testbed. Detailed
experimental results that validate the concepts derived from
the presented approach are reported.
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