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ABSTRACT 

Two approaches are used when studying impact problems: impulsive ones and compliant ones. In an 
impulsive approach, the time interval where the collision takes place is considered to be negligible, and so 
the system configuration is assumed to be constant. The final mechanical state of the colliding system is 
obtained directly from the initial one through algebraic equations and energy dissipation assumptions. In a 
compliant approach, the colliding surfaces are modelled through springs and dampers (usually nonlinear), 
and the equations of motion are integrated during the impact time interval to obtain the final state. 
Though both approaches have been widely used in the field of biomechanics, no comparative study can 
be found in the literature that could justify choosing one or another. In this paper, we present both 
approaches and compare them when applied to two examples related to gait problems: a passive walker 
and a simple model of crutch locomotion. We will show that the results are really close whenever 
nonsliding conditions are assumed at the impact points. 
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1 INTRODUCTION 

The analysis of the impact dynamics is a major subject in biomechanics, since this phenomenon is often 
present when the human body interacts with the environment. This is the case, for example, of the heel 
strike in human walking that occurs at the end of the swing phase. When heel strike occurs, there is a 
sudden change of the velocities of the body and new constraint conditions are imposed on the system 
[4,13].  

There are two main approaches for the dynamics analysis of impact in the literature: impulsive and 
compliant [19]. The use of one or the other depends on the purpose of the study. Surprisingly, no 
comparison between both approaches when applied to biomechanics can be found in the existing 
literature. The aim of this paper is to compare the performance of impulsive and compliant contact 
formulations using two different examples of impacts in biomechanical systems. 

Impulsive approaches assume that the contact interaction is instantaneous –compared to the time scale of 
the continuous finite motion of the system– and, therefore, the system configuration is constant during the 
impact interval. In this case, the integrated version of the equations of motion –that is, the impulse-
momentum equations– are used to solve the forward dynamics of the multibody system. This formulation 
provides a reasonable and easy-to-implement representation of the impact phenomenon. The solution to 
the forward dynamics is achieved simply by solving a set of algebraic equations and, therefore, it is very 
helpful to obtain performance indicators of the impact such as the mechanical energy loss or the 
magnitude of contact impulses [4]. When applying this methodology, only pre- and post-impact 
information is used in principle. Impulsive formulations have been widely used for the analysis of passive 
dynamic walking [3,16], and also to understand the physical principles of human locomotion [12,13]. 



In compliant approaches, the dynamics of contact interaction is solved continuously in time. Therefore, 
the configuration is allowed to change during the impact interaction. When contact is detected –usually 
from geometric information–, the contact forces are added to the differential equations of motion. This 
analysis requires a model giving the variation of the compliant contact forces during the impact interval 
as a function of the system state [6,10]. An advantage of using compliant descriptions of contact forces is 
that their evolution is followed during the impact interval, and thus, an estimation of the maximum force 
occurring during the impact can be obtained. This is important in biomechanics because contact forces are 
transmitted to joints and are responsible for fatigue and joint damage. Compared to impulsive models, 
however, the use of compliant formulations results in a computationally costly way to solve the forward 
dynamics, since it requires the integration of the system equations of motion. Moreover, a very small time 
step is needed due to the rapid variation of forces and velocities within the impact interval. Another 
drawback is that such models require a characterization of the geometry and the material properties of the 
bodies in contact in order to obtain stiffness and damping parameters. 

In this work, we compare the use of both approaches to analyze situations where constraints are suddenly 
imposed on the biomechanical system. The two application examples are the heel-strike impact of a 
passive dynamic compass-walker and the impact of the crutch tip with the ground at the end of the foot-
stance phase of crutch locomotion. For the sake of simplicity, nonsliding conditions at the contact point 
will be assumed in all cases. The energy loss at impact, the contact impulses and the post-impact 
velocities will be used as indicators to compare the performance of both contact formulations using the 
same pre-impact states. We will analyze how impact configuration and dynamic parameters of the model 
influence the performance of the two contact models. 

2 DYNAMICS MODELLING OF BIOMECHANICAL MULTIBODY SYSTEMS 

The dynamics of the compass walker (Figure 1a) and the subject walking with crutches (Figure 1b) are 
modelled using independent coordinates. Vector q is the  1n

 
array representing the configuration of 

the system, and q  is the  1n  array of generalized velocities. According to Figure 1, n=4 for the 
compass walker, and n=6 for the crutch walker model.  
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Figure 1. Application examples: (a) Compass-gait biped with circular feet. (b) Planar model of 
a subject walking with crutches. 

Both systems are assumed to have two-dimensional motion on the sagittal plane. Using a Lagrangian 
formalism, the general n equations of motion of such systems can be expressed as: 

    , A C  M q q c q q f f  , (1) 

where M is the mass or inertia matrix, c  represents the Coriolis and centrifugal effects, and Af  and Cf  
stand for the generalized applied and constraint –contact– forces, respectively. In what follows, the 
formulations for both impulsive and compliant contact modelling are outlined. 



3 IMPULSIVE FORMULATION 

Impulsive approaches consider the impact interval to be very short in the characteristic time scale of the 
finite motion of the system. Therefore, the configuration q is assumed to be constant during the 
“instantaneous” interaction, whereas velocities experience finite changes and accelerations reach infinite 
values. This latter fact is the reason for dealing with contact force impulses rather than with contact 
forces, and for using in principle the integrated form of the equations of motion, which are algebraic 
equations.  

The main drawback in an impulsive approach is the collision end detection [2]. Neither the final state nor 
the final values of the impulses are in general known beforehand, and an “end-collision criterion” has to 
be defined. The most common formulation of the collision end is done through restitution coefficients 
(kinematic, kinetic or energetic) [17,19] taking values in the interval (0, 1). Among them, the first two 
may be in general energetically inconsistent whenever friction is not neglected [1], and have to be used 
cautiously.  

The impact problem studied in this paper is that of a single-point impact with the ground in bipedal or 
crutch locomotion. Under the assumption of nonsliding conditions, the collision end criterion is that of 
final zero velocity for the impact point (called point Q from now on), since new constraints are 
established on the foot or the crutch after impact.  

Considering that impact takes place in the [ ,t t  ] interval –where t
 
and t

 
stand for the so-called pre- 

and post-impact instants, respectively– and that the system has n degrees of freedom (DOF) q , the 
velocity of the colliding point  Qv  can be related to the generalized velocities through the  3 n

 
Jacobian matrix as    Q v A q q . At impact configuration, matrix A  can be decomposed into a  1 n  
vector and a  2 n matrix specific for the normal and tangential components of  Qv : 

 
   

 
n n

t t

v Q
Q

Q

        
    

A
v q

v A
 , (2) 

and the collision end condition can be written as: 

  Q  + +v Aq 0 , (3) 

which represents the constraint condition of the system at post-impact time t , i.e., the fact that the 
colliding point stays in contact with the ground without slipping after impact. The impulsive approach 
used in this work starts with the general equations of motion as in Equation (1). In our case, we assume 
that the only impulsive forces are the ground contact forces (normal and tangential forces) at point Q. The 
Coriolis and centrifugal effects and the other forces are essentially non-impulsive. Thus, Equation (1) can 
be rewritten as: 

 
nT T T

n n t t
t

dP
d dP d

d

 
    

 
M q A A P A

P
 , (4) 

where ndP  and tdP  are the differential normal and tangential contact impulses at Q. The total impulses 

nP  and tP  can be obtained as  

      ,  n n n t t tP dP F Q dt d Q dt
   

   
      P P F , (5) 

where nF  and tF  are the normal and tangential contact forces at Q, respectively. 

3.1 All-algebraic Method 

As mentioned before, what is usually called “impulsive formulation” relies on algebraic equations 
obtained from Equation (4) through a time integration over the impact: 



 
1n nT T

t t

P P    
       

   
+M q A q q M A

P P
   , (6) 

where the superscripts “–” and “+” indicate at pre- and post-impact time, respectively. Using Equation 
(1), the impulses can be obtained as: 

 
  11n T

t

P   
  

 
AM A Aq

P
 . (7) 

The final velocities are obtained by substituting back these final impulses into Equation (6): 

   11 1T T       
+q I M A AM A A q  . (8) 

The last equation can be expressed through the “Space of Admissible/Constrained Motion” projectors, aP
 

and cP  respectively [4,11], as  

  c a
     +q I P q P q . (9) 

3.2 Integrative Method 

The all-analytical solution presented in Section 3.1 does not give any insight about the time history of the 
normal and tangential forces at Q, their associated work nW

 
and tW , and that of  Qv during the impact, 

as time is not actually a variable in that kind of model. However, Equation (4) suggests another variable 
that could be used to trace the  Qv  evolution. 

As the tangential velocity of the colliding point is taken to be zero throughout the whole collision, 

td A q 0 , the tangential differential impulse is proportional to the normal one. From Equation (4): 

   11 1T T
t t t t n nd dP

  P A M A A M A , (10) 

and so the right hand side of Equation  (4) is strictly proportional to ndP : 

   11 1T T T
t t t t n nd dP

     
M q I A A M A A M A . (11) 

Thus, the normal impulse at Q appears as a “natural variable” of integration. We can then proceed to a 
numerical integration of  Equation (10). Though the final value of nP

 
is not known beforehand, the end of 

the integration is defined through the condition  Q v 0 .  

The evolution of nW  and  Qv
 
as a function of nP  can provide another interesting tool to compare 

impulsive with compliant approaches, though not as straightforward as those of energy loss at impact and 
post-impact velocities. 

  
0

nP

n n nW v Q dP  . (12) 

4 COMPLIANT FORMULATION 

Compliant formulations, or penalty formulations, consider the impact phase with finite duration. These 
techniques relax the contact constraints and replace them with force models that establish an explicit 
representation of the contact forces (both normal and tangential). The associated generalized forces 
appear on the right hand side of Equation (1). The use of those formulations is helpful to obtain a 
realistic-looking motion behaviour. Nevertheless, the required model parameters are not always easy to 
identify and, moreover, their physical meaning could be sometimes questionable. 



4.1 Normal Contact Force Model 

The simplest compliant formulations for the normal force are the Maxwell and the Kelvin-Voigt models 
[7,19], where the contact force is represented through a series or parallel linear spring-damper element, 
respectively. They have been widely used due to their simplicity. However, they do not express the 
nonlinear relationship between force and indentation when contact occurs [15].  

In this work, we use a nonlinear Hunt-Crossley model to account for that relationship [8,15]. For the case 
of single-point contact of spherical surfaces, the normal contact force nF  has the following expression: 

 3 2 3 2
n n n n nF k        , (13) 

where nk  is the generalized normal stiffness according to Hertz theory [9] –and it depends on the 
materials properties and the surfaces curvature–, n  (>0) and n  are the normal indentation between 
bodies and its time derivative, and   is the hysteresis damping factor. In this paper, the contacts are 
modelled as sphere-to-plane. Thus, the generalized stiffness nk  can be calculated as [9,19] 

 4

3

sph
n

E* R
k   , (14) 

where sphR  is the radius of the sphere and E*  is the effective Young’s modulus, which can in turn be 
calculated through: 

 12 21 1sph pl

sph pl

E*
E E

 


  
  
  

 . (15) 

sphE  and plE  stand for the Young’s modulus of the sphere and plane materials, and sph  and pl  stand 
for the Poisson’s ratio of the same materials. The damping parameter can be obtained as a function of the 
restitution coefficient e and the pre-impact normal velocity n

  as [15] 

  23 1

4

n

n

k e

 


    . (16) 

4.2 Tangential Contact Force Model 

The tangential contact force tF  is described through a Coulomb's dry friction model accounting also for 
the compliance of materials in the tangential direction. Assuming nonsliding conditions in the contact 
area, this force is 

 1 2
t t n tk  F   , (17) 

where tk  is the tangential stiffness according to Hertz theory [5,9], and t  the tangential displacement. 
The stiffness parameter tk  can be calculated as [5,9] 

 8t sphk G* R  , (18) 

where G*  is the effective rigidity modulus of materials, which can in turn be calculated through: 

 1
2 2sph pl

sph pl

G*
G G

 


  
  
  

 . (19) 

sphG  and plG  stand for the rigidity modulus of the sphere and plane materials. Note that Equation (16) is 
only valid if t s nF F  , where s  is the static coefficient of friction. When that condition is broken or a 
relative tangential velocity between the bodies in contact appears, the tF  force is formulated according to 
Coulomb's model as  t d n t tF F v v , where d is the dynamic coefficient of friction. 



5 APPLICATION EXAMPLES AND RESULTS 

In this section, the two aforementioned models are used to simulate the dynamics of the impact of the two 
examples shown in Figure 1. The results obtained applying one or the other formulation will be compared 
to asses the similarity regarding the impact dynamics.  

5.1 Compass-gait Biped 

The compass walker presented in Figure 1a is composed of two straight legs of length l = 1 m and mass  
m = 5 kg. The centre of mass of each leg is at a distance b = 0.5 m from the hip. The radius of the feet is R 
(this parameter will be varied in simulations) and the hip is modelled as a point mass mH = 10 kg located 
at the revolute joint between the two legs. In this model, coordinates 1q

 
and 2q  indicate the position of 

the centre of the stance foot, coordinate 3q  denotes the absolute orientation of the stance leg, and 4q
 
is 

the relative angle between the two legs. The pre-impact state  , q q  is defined as follows: 

 Pre-impact configuration: 3 4 30 0 2
T

q q q    q , where 3q  will be varied in the analysis. 

 Stance foot rolling on the ground without slipping, that is, 1 3q Rq    and 2 0q  , with 

3 1 rad sq  . 

 Colliding point not slipping at pre-impact time, which implies that 4 0q  . 

To evaluate the behaviour of both impact formulations for different pre-impact configurations, the 3q  
coordinate is varied within the interval  0º , 30º . Note that this is equivalent to simulating different step 
lengths. In this case, the radius of the feet is kept constant,  R = 0.25 m. The results are shown in Figure 2. 
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Figure 2. (a) Post-impact separation velocity of the trailing foot and post-impact velocity of 
the hip as a function of 3q  using both approaches. (b) Mechanical energy loss at impact as a 
function of 3q  using both approaches. 

Figure 2a shows the post-impact separation velocity of the trailing (or rear) foot, i.e., 2q , and the post-
impact velocity of the hip point using both approaches. Both contact models yield similar results. The 
curves showing the post-impact velocity of the hip almost overlap. The vertical velocity of the rear foot 
also presents similar values for  3 0º , 10ºq  , but there is some discrepancy in the rest of the interval. 
Nevertheless, the tendency of both curves for increasing values of 3q  is comparable. From the results 
above, it can also be concluded that the separation velocity reaches its maximum value for an angle 3q  
between 15º to 20º. 

Figure 2b shows the mechanical energy loss at impact using both contact models. In the compliant 
approach, this energy loss equals the work of the contact forces. As for the impulsive approach, this 
energy loss is calculated as the change of kinetic energy since the configuration, and therefore the 
potential energy, are assumed constant. From these results, the main conclusion is that both methods 
estimate a very similar amount of energy loss for each impact configuration q . This was an expected 
but not obvious result if we take into account the nature of both models. In the impulsive approach, the 
change of energy is due to the sudden imposition of the constraint expressed in Equation (3), whereas in 

a) b) 



the compliant approach all constraints are relaxed and contact forces are modelled taking into account the 
material properties and geometry of the bodies in contact, Equations (13) and (17). From the plot in 
Figure 2b, it can be clearly concluded that the energy loss at impact for a compass walker increases with 
angle 3q  and, therefore, with the step length [4,12]. Note that there is a clear correlation between the 
energy loss and the decrement of the velocity of the hip (which is equal to 1 m/s before impact for all 
cases). 

The performance of both approaches to a change in a geometric parameter of the system has also been 
evaluated. We have restricted our study to the radius, which has been varied from 0.05 to 1 m (leg 
length). The pre-impact configuration is 3 20ºq   and 4 32 40ºq q  . The Jacobian matrix A of the 
constraints imposed in the impulsive formulation depends on that parameter, and also the stiffness 
parameters kn and kt of the compliant contact forces. The results are shown in Figure 3. 
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Figure 3. (a) Post-impact separation velocity of the trailing foot and post-impact velocity of 
the hip as a function of R  using both approaches. (b) Mechanical energy loss at impact as a 
function of R  using both approaches. 

Figure 3a shows the same aforementioned post-impact velocities as a function of R. Again, the two curves 
for the post-impact velocity of the hip almost overlap. As for the separation velocity of the trailing foot, 
the curves overlap for R > 0.5 m, whereas for lower radii there is a slight difference. 

Figure 3b shows the energy loss at impact using the two contact models as a function of R. The results are 
again very close. Note that in general, the compliant approach estimates more energy loss rather than the 
impulsive one. The reason could be that a contact force model is also included on the rear foot in the 
compliant approach, whereas in the impulsive case this contact is relaxed. From Figure 3b, it can be 
concluded that the radius of the foot is a key parameter to reduce energy losses at heel strike. Large radii 
lead to lower energy losses, and when R = l = 1 m no energy is lost because there is no impact at all. This 
results are in clear agreement with the works [14,16]. 

5.2 Crutch Locomotion 

The planar model of the subject with the crutches, Figure 1b, is composed of four segments (legs , torso, 
upper arms, and arms plus crutches) linked by revolute joints, modelling the hip, shoulder and elbow 
joints. Coordinates 1q

 
and 2q  indicate the position of the feet, coordinate 3q  denotes the absolute 

orientation of the legs, 4q
 
is the relative angle between torso and legs, 5q

 
is the relative angle between 

upper arms and torso, and 6q
 
is the relative angle between crutches and upper arms. The anthropometric 

parameters are the ones for a subject whose total mass is 70 kg and the height is 1.75 m according to [20]. 
The crutches have a mass of 1.2 kg and are 1 m long. These parameters are summarized in Table 1. 

 

 

 

a) b) 



 Legs Torso Upper Arms Arms+crutches 

m (kg) 22.54 40.46 3.92 4.28 

IG (kg·m2) 2.07 2.66 0.044 0.433 

l (m) 0.93 0.51 0.33 1.25 

a (m) 0.51 0.34 0.14 0.33 

Table 1. Anthropometric parameters of the model of a subject with crutches. 

The pre-impact state  , q q  is defined according to kinematic studies of subjects walking with crutches 
[18]. As for configuration q , the rear foot will be at position  1 20, 0q q  , 5q  will be equal to 150º 
in all cases, and 6q  will be that needed to guarantee the crutch-ground contact; the other two coordinates 
will be varied within reasonable intervals. Concerning pre-impact velocities, kinematic studies show that 
relative angular velocities associated with the hip, shoulder and elbow joints are approximately zero 
before crutch tip impact [18]. Thus, the only non-zero generalized velocity is 3q , and this can take 
different values depending on the subject specific pathology. For the sake of simplicity, we have taken a 
value of 1 rad/s. 

The behaviour of both impact formulations for different pre-impact leg angles 3q  within the interval 
 5º , 30º has been explored. The hip angle has been kept constant and equal to 4 10ºq   . The results are 
shown in Figure 4.  
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Figure 4. (a) Post-impact separation velocity of the feet and post-impact velocity of the 
shoulder as a function of 3q  using both approaches. (b) Mechanical energy loss at impact as a 
function of 3q  using both approaches. 

Figure 4a shows the post-impact velocity of the shoulder joint and the vertical velocity of the feet as a 
function of the legs angle 3q . Both curves almost overlap, which means that the post-impact kinematics 
are very close in the two contact approaches. Moreover, the separation velocity decreases when angle 3q  
increases. Therefore, a lower angle facilitates lifting the feet up, thus decreasing the push-off effort in 
swing-through crutch gait. However, for low values of 3q , the post-impact velocity of the shoulder is 
lower. 

Figure 4b shows the loss of mechanical energy. The two curves show a similar tendency. For angles 
 3 5º ,15ºq   the two contact approaches lead to very close results in terms of energetic losses. For 

higher angles the two curves differ a little bit, although the tendency remains the same. From the results 
obtained, one can conclude that a higher angle 3q  leads to less energy losses at impacts when walking 
with crutches. Note that in general less energy loss leads to a higher velocity of the shoulder after impact. 

The behaviour of both impact formulations for different hip relative angles 4q  within the interval 
 10º , 20º  has also been studied. The absolute angle of the legs has been kept constant and equal to 

3 10ºq   . The results are shown in Figure 5.  

a) b) 
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Figure 5. (a) Post-impact separation velocity of the feet and post-impact velocity of the 
shoulder as a function of 4q  using both approaches. (b) Mechanical energy loss at impact as a 
function of 4q  using both approaches. 

Figure 5a shows the post-impact velocity of the shoulder joint and the vertical velocity of the feet as a 
function of the hip angle 4q . Again, both contact formulations lead to similar values of the post-impact 
kinematics. The separation velocity of the feet is maximum when the torso leans slightly backwards with 
respect to the legs, that is, for 4 5ºq   . Conversely, the velocity of the shoulder after impact increases 
when the torso leans forward. 

Figure 5b shows the loss of mechanical energy of the biomechanical model using the both approaches. 
Both curves show the same tendency, and they overlap for hip angles 4 0q  . For negative angles –that 
is, when the torso leans backwards with respect to the legs– the models estimate slightly different 
energetic losses. Note that in Figure 4b energy losses are estimated to be higher when the impulsive 
approach is used, whereas in Figure 5b it is the contrary. It is important to remark that in this case, the 
velocity of the shoulder after the impact is also related to the energetic loss –note the coincident tendency 
of the curves–: higher energetic losses correspond to lower velocities of that joint. 

6 CONCLUSIONS 

In this work, we have presented two different approaches for the forward dynamics analysis of impacts in 
multibody biomechanical systems. In the first one, the impact condition is established through impulsive 
bilateral constraints, and equations of motion integrated over the impact interval are used. In the second 
approach, compliant contact models are used to define an explicit relationship between the normal and 
tangential forces and the system state. These models depend on the materials properties and geometry of 
the bodies in contact. 

We have compared the performance of both approaches in two impact situations in biomechanical 
systems: the heel strike impact of a compass-gait walker and the impact of the crutch tip in swing-through 
gait. We have used post-impact velocities of the system and the mechanical energy loss at impact as 
indicators to compare the results of the dynamic forward simulation. We have varied dynamic parameters 
and configuration in order to see their effect in the performance of both approaches. The main conclusion 
is that the results are surprisingly similar taking into account the different nature of the contact 
approaches. Therefore, choosing one or the other will not affect significantly the result of the analysis. 
The main advantage of the impulsive formulations is their simplicity, since forward dynamics can be 
solved algebraically. However, no information on the real contact forces can be obtained. Compliant 
formulations are computationally costly, but the evolution of the contact forces during the impact interval 
can be obtained.  

 

 

a) b) 
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