Proceedings of IMECE2008

2008 ASME International Mechanical Engineering Congress and Exposition

November 2-6, 2008, Boston, Massachusetts, USA

IMECE2008-66684

EFFECTS OF MASS DISTRIBUTION AND CONFIGURATION ON THE ENERGETIC
LOSSES AT IMPACTS OF BIPEDAL WALKING SYSTEMS

Josep Maria Font*

Centre for Intelligent Machines
Department of Mechanical Engineering
McGill University
Montréal H3A 2K6, Québec, Canada
E-mail: josep.font@mcgill.ca

ABSTRACT

Understanding the dynamics of human walking is a com-
plex task due to the interaction of the musculoskeletal and the
central nervous systems. Nevertheless, the use of simple models
can provide useful insight into the mechanical aspects of bipedal
locomotion. Such models exploit the observations that human
walking significantly relies on passive dynamics and inverted
pendulum-like behaviour. The mechanical analysis of walking
involves the study of the finite motion single support phase and
the impulsive motion of the impacts that occur at heel strike.
Such impacts are dominant events because they represent a sud-
den topology transition and moreover, they are the main cause of
energy consumption during the gait cycle. The aim of this work
is to gain insight into the dynamics and energetics of heel strike.
We use a concept that decouples the dynamics of the biped to the
spaces of admissible and constrained motions at the topology
transition. This approach is then applied to a straight-legged
biped with upper body. Detailed analysis and discussions are
presented to quantify the effects of the mass distribution and the
impact configuration on the energetics of walking.

NOMENCLATURE

A; Jacobian matrix of the impulsive inert constraints.

Ag Jacobian matrix of the finite motion constraints.

M Mass matrix of the system.

P, Projector associated with the space of admissible motion.
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P. Projector associated with the space of constrained motion.
q Generalized coordinates of the system.

q Generalized velocities of the system.

v, Generalized velocities of the space of admissible motion.
v. Generalized velocities of the space of constrained motion.
L Step length.

T  Kinetic energy of the system.

T, Kinetic energy of the space of admissible motion.

T. Kinetic energy of the space of constrained motion.

U Potential energy of the system.

&/ Ratio of the pre-impact kinetic energy that is lost.

&, Energy loss due to impacts per unit distance.

A Contact impulses on the colliding foot at heel strike.

As  Contact forces on the stance foot during finite motion.
INTRODUCTION

The mechanical analysis of walking is a fundamental task
to understand the dynamics and energetics of human locomo-
tion. This is a complex issue due to the interaction of the mus-
culoskeletal and the central nervous systems and the fact that
motion is actuated by numerous muscles. Therefore, obtaining
detailed models to analyze the mechanics of walking is a diffi-
cult task. Nevertheless, it was observed that during the single
support phase of the gait the motion of the stance leg is similar
to that of an inverted pendulum, and the swing leg also performs
a pendulum-like motion about the pelvis [1]. Electromyographic
(EMG) data shows low muscular activity during this phase [2],
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which supports the fact that human walking is mainly passive
between successive impacts (heel strikes). From these observa-
tions, simple models that provided useful insight into the dynam-
ics of walking were developed [3].

Passive dynamic walking, first introduced in [4], is based on
this idea of passive pendulum-like motion during the single sup-
port phase. It refers to simple mechanical systems that are able
to walk down a slightly inclined walkway with no external con-
trol or actuation, i.e., gravity alone powers the motion [5-9]. The
work on this type of bipeds was primarily motivated by the drive
for energy efficiency and showed that it was possible to obtain
stable limit cycles, with remarkably human-like motion, with-
out any kind of actuation and control. The analysis of passive
dynamic walking has also been useful to develop a better under-
standing of human locomotion. For instance, in [10] and [11] a
simple passive-dynamic model was used to analyze the energetic
cost of human walking. Useful conclusions were drawn based on
combining experimental data with the dynamics of this biped.

In humanoid robotics, a type of powered passive-based
robots (dynamic walking robots) have recently appeared in the
literature [12—14]. These robots use minimal actuation, sensing
and control to walk like a purely passive dynamic walker but on
level ground. According to [12], the energy consumption of such
robots is much lower than that of other anthropomorphic robots
that use joint-angle feedback control to follow specified trajecto-
ries and, furthermore, it is similar to that of human walking.

The mechanical analysis of these systems involves the study
of two phases: the finite motion single support phase in which
the stance leg behaves like an inverted pendulum rotating about
the foot, and the impulsive motion phase that occurs when the
swing leg impacts the ground at heel strike. This impact is a very
dominant event in the behaviour of the walking system since it
is the main cause of energy consumption during the motion [13],
and in turn, it gives rise to a sudden change of the topology of
the system. Hence, the analysis of the impulsive dynamics of
heel strike is a key issue in bipedal locomotion.

In most publications the mechanical analysis of walking is
performed based on two different mathematical models devel-
oped separately [6-9], one for the finite motion of the stance
phase, and the other for the impulsive motion of the heel strike.
Conversely, in this work a unified formulation to analyze both
phases of motion is presented. We use an augmented non-
minimum set of coordinates that allows the study of the system,
as a variable topology system, by changing the physical con-
straints during the successive phases of motion. We also inter-
pret a concept that allows to decompose the kinetic energy and
the dynamic equations of impulsive motion of the system to the
spaces of constrained and admissible motions.

The article is organized as follows. First, the formulation
to study the dynamics of the biped is introduced. Based on the
impulsive constraints that characterize the topology change, next
section introduces the decomposition technique which is used to

Figure 1. DYNAMIC MODEL OF THE BIPED.

analyze the energy redistribution at heel strike. The formulation
is then applied to a biped with upper body and it is used to ana-
lyze how various dynamic parameters and the impact configura-
tion influence the energetic losses at impacts. Finally, the main
contributions of the work are summarized.

DYNAMICS MODELLING OF THE BIPED

In this work we consider an extension of the so-called
compass-gait biped [7,8]. This has been widely studied in the
literature since it is the simplest mechanism that models the dy-
namics of both legs in the sagittal plane during the gait cycle. The
compass biped is a two-dimensional walking model that consists
of two identical straight legs of length / and mass m. The cen-
tres of mass of the legs are at a distance a from each foot, i.e.,
at a distance b = [ — a from the hip. Each foot is modelled as a
point and the hip as a point mass my located at the revolute joint
between the two legs, Fig. 1.

To study how the mass and the position of the upper body
influence the dynamics of walking, a third link that can rotate
about the hip has been added. The mass of this link, which rep-
resents the upper body (or torso), is m7 and its centre of mass is
at a distance [7 from the hip. In Fig. 1, points Pg and Py, refer to
the right and left foot respectively.

The configuration of this system can be described by 5 gen-
eralized coordinates that are represented by the 5 x 1 dimensional
array q = [q1,492,493,494,9s5)" » Fig. 1. Coordinates ¢; and g, indi-
cate the (x,y)-position of Pg with respect to the absolute inertial
frame. Coordinate g3 indicates the absolute orientation of the
right leg, and ¢4 and g5 denote respectively the orientation of the
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left leg and the upper body with respect to the right leg. Angle
g4 will be referred to as inter-leg angle. It is important to point
out that the angles are defined positive with the sense shown in
Fig. 1.

Gait i is considered to take place between time points #;_;
and #;. This is a variable topology system, where points Pg and P,
are subjected to physical constraints during the successive phases
of walking. Their velocities can be expressed as

VR = ARq and v = ALq, (1)

where vg and v represent the 2 x 1 velocity vectors of Pg and
P;; and Ag and A, are the 2 x 5 related Jacobian matrices, which
are given for this model in Appendix A. As said before, the gait
has two characteristic phases: the single support phase with fi-
nite motion dynamics, and the impulsive motion phase that takes
place when the swing foot collides the ground.

During the finite motion phase of walking, one of the feet
(the stance foot) stays in contact with the ground without slip-
ping. This can be modelled using the bilateral constraints

Asq=0, (@)

where § is either R or L depending on which of the feet is
the stance foot. These velocity level constraints are holonomic,
hence they can also be reduced for each step to configuration
level constraints in the form of ®(q,k;) = 0, where k; is a con-
stant associated with gait i, representing a different offset along
the direction of walking.

The instantaneous phase of heel strike represents impulsive
motion. The swing foot impacts the ground at time #;. This im-
pact is required to be “inelastic”, i.e., the colliding point of the
swing foot must stay in contact with the ground. This is a rea-
sonable and widely used assumption in the analysis of walking
systems [6-8, 13]. This event can be characterized by inert con-
straints, which represent a class of impulsive constraints [15,16].
Let us consider that [t , ;"] is the interval representing the pre-
and post-impact instants. This interval is considered to be very
short on the characteristic time scale of the finite motion of the
system. Therefore, during [z, tﬁ] the configuration of the sys-
tem remains unchanged. The inert constraints representing the
contact transition and the change in topology can be written as

Aq" =0, 3)

where ¢ stands for ¢ at tf, and I is either R or L depending
on which foot is the impacting swing foot. Equation (3) repre-
sents the required topology (constraint configuration) at #;" at the
velocity level, i.e., the colliding foot in contact with the ground

without slipping. In [£;", #;"] the contact of the stance foot should
also undergo a transition. This is normally not modelled in other
works, but simply assumed that this foot will lift from the ground.
Here we will not make this assumption unconditionally, but al-
ways check its satisfaction. The stance foot contact and separa-
tion at impact is governed by the velocity-level unilateral con-

straint
vi =Bsq™ >0, @)

where S = L if I = R and vice versa, v}; is the component of the
velocity of the stance foot normal to the ground at #;", and Bg is a
1 x 5 array that gives the representation of the direction normal to
the ground in terms of the generalized coordinates. The desired
situation is that v;n > 0, i.e., the non-colliding foot lifting up from
the ground passively without extra actuation. If that happens,
the pre-impact bilateral constraints (2) become passive and the
topology of the system changes.

Dynamic Equations for the Finite Motion
The kinetic energy of the walking system can be written as

1
T(q,4) = 54"M(9)q, 5)

where M is the 5 x 5 mass matrix of the biped. This matrix is
symmetric and positive definite, and it is given in Appendix A.
The potential energy of the system U(q) includes the effects of
conservative forces. From the expressions of T and U, the dy-
namic equations for the finite motion of the system can be sym-
bolically obtained as

a7 E aq-i-E:fA—&-fR, ©6)

d (BT) oT JU
where f4 and fg stand for the generalized non-conservative ap-
plied forces and the generalized constraint forces, respectively.
These equations for the finite motion phase are associated with
the constraints expressed in Eqn. (2). The generalized constraint
forces can be expressed as fg = Agks, where Ag is the constraint
Jacobian in Eqn. (2) and As = [As,, As, ] represents the constraint
forces acting on the stance foot. The following conditions must
be satisfied

As, >0 and |As| < pihs,, Q)

where y; is the coefficient of static friction, in order to assure that
the stance foot does not lose contact with the ground and does not
slip during the finite motion phase.
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Dynamic Equations for the Impulsive Motion

When the swing foot impacts the ground at heel strike,
the system undergoes a sudden change in topology, and part of
the pre-impact energy of the system is lost. The dynamics of
this impulsive motion phase can be characterized by impulse-
momentum level dynamic equations. Based on Eqn. (6), these
can be obtained in a general form as [15, 16]

[E)T

+
aq} _M(q" -4 ) =T+ ®)

T3]

where and “+” denote the pre- and post-impact instants 7;”
and t;’ for the transition between gaits i and i+ 1; fy and £y are
the impulses of the generalized non-conservative applied forces
and the generalized constraint forces; and [(97)/(9q)]" = —f; is
the negative of the impulse of the generalized inertial forces. If
the applied forces have a non-impulsive nature, which is usually
the case in dynamic walking, then f4 = 0. For this impulsive
motion phase it is also assumed that ¢~ can be determined based
on the previous finite motion analysis of the single support phase.

The constraints in this impulsive motion phase were ana-
lyzed earlier in this section, they are expressed in Eqn. (3). The
contact impulses are normally generated by these constraints,
hence, fr = A,TZ.I where A; = [7»1,, XIn]T represents the impulse
of the constraint forces generated at heel strike. If the unilateral
constraint in (4), associated with the stance foot is passive (i.e.,
vgrn > 0), then this will not generate any impulse and the stance
foot is lifting up, as it should for a natural walking gait.

Should the topology change cause a situation that v}rn <0,
then this would mean that the non-colliding stance foot does
stay in contact. In this case, Eqn. (4) would also represent an
active constraint that can generate impulses, since the equality
sign would be valid. It would give a normal impulse As, which
would be equivalent to the generalized constraint force compo-
nent Bgisn.

DECOMPOSITION OF THE IMPULSIVE MOTION

Based on the Jacobian defining the inert constraints in
Eqn. (3), the tangent space of the configuration manifold of the
walking system can be decomposed to the spaces of constrained
and admissible motions [17, 18] for the pre-impact instant. This
will then also hold for the entire duration of the contact onset,
since the configuration of the system does not change during this
short period of time. The two subspaces can be defined so that
they are orthogonal to each other with respect to the mass metric
of the tangent space. This decomposition can be accomplished
via two projector operators [17, 18]. The projector associated
with the space of constrained motion can be written as

P.=M'A7 (AM'AT) ' A, 9)

and the projector for the space of admissible motion can be ob-
tained as

P,=1-P.=1-M'A7 (A,M*IAIT)’l A;, (10)

where I denotes the 5 x 5 identity matrix. These projectors are
not symmetric, which is a direct consequence of the nature of
the metric of the tangent space. Based on them, the generalized
velocities of the system can be decomposed as

q=ve+ve=Pq+Puq, an

which represent the two components associated with both sub-
spaces. It is interesting to note that in general v, = P.q and
v, = P,q are non-holonomic components. Any vector of gen-
eralized forces or generalized impulses can also be decomposed
using the transpose of the operators given above [17]. Then, for
the impulsive case we have

f=f.+f, =P'f+ Pt (12)

Based on Eqns. (5) and (11), it can be shown that the kinetic
energy can also be decomposed as

1 1
EchMvc + Engva. (13)

T=T.+T,=
To obtain this equation it was used that the projectors in (9)
and (10) are orthogonal with respect to the system mass metric,
ie., PZ,MPH = PZMPL. =0, with 0 denoting the 5 X 5 zero ma-
trix. Therefore, v/ Mv, = vIMv, = 0. Any force or impulse
arising in the space of constrained motion will change only T,
leaving T, unaffected and vice versa [19]. The impact character-
ized by the constraints in (3) gives rise to impulses which will
influence quantities in the space of constrained motion only.
Based on the above decompositions, it can be seen that the
impulse-momentum level dynamic equations in (8) can be de-
coupled as

+
[gﬂ =M (v} —v,) =AM, (14)

which are the impulse-momentum level dynamic equations for
the space of constrained motion, and

97, +_ +_yv) =
L)Va] =M (v, —v,) =0, (15)
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which describes the impulsive dynamics associated with the
space of admissible motion. From Eqn. (15) and using that M
is positive definite, it is immediately visible that v = v,,. Based
on Eqns. (3) and (11) it can also be concluded that v = 0. Con-
sidering this and using Eqn. (14), we can write that

~Mv, = A7), (16)

and also, taking into account the velocity decomposition in (11),
we obtain the following expression to solve for the post-impact
generalized velocities

Q" =v=v, =P,q . (17)

Once the post-impact velocity vector ¢ is determined, it
is important to verify that the normal component of the non-
colliding foot, v?n = Bgq™, is positive in order to leave the
ground. If this is not the case that will mean that the unilateral
constraint of ground contact becomes active and then forward
walking does not materialize in a natural way.

Based on Eqns. (9), (11) and (16) we can also obtain the

solution for the generalized constraint impulses as
N 1.7\ .
M=~ (AM AT A (18)

which appear in order to set the velocity of the colliding foot to
zero. The normal component of A; is the impulse perpendicular
to the ground and it is usually associated with the deformation
of the colliding bodies (foot-ground) in this direction. The other
component is the impulse in the tangent direction which is more
complex in nature, since it can come either from friction or from
tangential compliance of the colliding bodies.

Energetic Aspects of the Heel Strike

Energetic aspects are very important for the optimal design
and control of bipedal robots [20,21], and also to gain a better un-
derstanding on the energetic cost of human locomotion [10, 11].
In this section we use the kinetic energy decomposition intro-
duced in (13) to analyze the energetic losses at heel strike. First
of all, the application of the energy theorem between the pre-
impact time 7, and the post-impact time ;" yields

T() =T )=T =T = Wys <0, (19)

where Wys denotes the negative work done by the impulsive con-
tact forces at heel strike. Then, based on the kinetic energy de-
composition in Eqn. (13) and using that v” = 0, we obtain

\Was| = —Wus = (T +T, ) — (0+T,F) >0.  (20)
+
T T

Using the fact derived from Eqn. (15) that v, remains con-
stant during impact, we can conclude that the kinetic energy of
the space of admissible motion is also constant, 7," = T,. Then,
from Eqn. (20) we have that the amount of energy lost at impact
is exactly 7.,

S SR | .
Was| =T, =5 (47) PcMPeq @1

whereas T+ = T,;" = T, will stay in the system after impact.
This is an important result, because it means that the energetic
expenditure at impact can be predicted, via the presented de-
composition approach, only with information of the pre-impact
kinematics of the system. This can be an important tool for the
design and control of dynamic walking systems, and to better
understand the biomechanics of human locomotion.

Finally, based on Eqns. (11) and (16), and considering that
VZ;MVC =0, it is also possible to write that

—(q)"Mv, =27 = (q")"Af A, (22)

which gives an explicit relationship between the impulses gener-
ated by the contact onset and the kinetic energy 7, that is lost in
the contact event.

We define the following indexes to quantify the energetic
aspects of the gait

7. (q) PTMP.q~ T,

= d = — 23
E.b[ (qf)Tqu an &L L’ ( )

=go=

where &; (non-dimensional) represents the ratio of the pre-impact
kinetic energy that is lost at heel strike, i.e., the local energetic ef-
ficiency of the impact. Regarding &; (with units J/m), it accounts
for the energetic losses per unit distance walked by the biped.
This index will be useful when analyzing different step lengths.
Distance L in Eqn. (23) stands for the step length which can be
expressed as a function of the configuration of the system at heel
strike. For the system at hand, we have L(q~) = 2/sin (g, /2).

RESULTS AND DISCUSSION

In this section, the decomposition of the kinetic energy at the
pre-impact time of the heel strike event is used to analyze how
different configurations and mass distributions of the considered
system influence the energetic aspects of that event. The dynamic
parameters of the biped are given in Table 1.

We will vary the mass parameters m, my and mr to analyze
how different mass distributions of the system affect the ener-
getics of heel strike. We will use the following non-dimensional
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Table 1. DYNAMIC PARAMETERS OF THE BIPED.
Param. Value Description

mp 30kg Mass of the biped (= 2m + my +mr)
/ 0.8 m  Length of the leg
Ir 0.4 m Distance from hip to torso centre of mass

b 0.4 m Distance from hip to leg centre of mass

parameters, y = i—’; and ur = ;%T;’ to take into account the effect
of the lower body and the upper body mass distributions, respec-
tively.

In this study, we assume that the right foot is in contact with
the ground at the pre-impact time, i.e., g, = 0, and that the left
foot impacts the ground. For this case, matrix By representing
the normal direction of the contact between the stance foot and
the ground is the second row of Eqn. (24) given in Appendix A.
This is used to check the validity of vgn =Bgsq™ > 0, according to
Eqn. (4). Matrix A;, defining the inert constraints at the colliding
foot (left foot), takes the expression of Eqn. (25). Regarding
the pre-impact generalized velocities ¢, we make the following
assumptions:

(i) The right foot is in contact with the ground without slipping,
ie,g; =0and g, =0.

(i) The tangential component of the velocity of the colliding
point at pre-impact time is zero. This is a reasonable as-
sumption in order to avoid slipping in the beginning of the
contact onset. This assumption implies that g, = 0, i.e.,
there is no relative angular velocity between the legs just be-
fore impact.

(iii) The angular velocity of the torso with respect to the iner-
tial frame is zero, i.e., @7 = g5 —¢5 = 0 (defined positive
clockwise). From that, we obtain the following kinematic
relationship g5 = g5 .

The assumptions above imply that all the pre-impact kine-
matics depend on the absolute angular velocity of the right leg,
g5 . We will consider for all the analyzed impacts g5 = 1 rad/s,
which is a typical value for compass walkers.

Effects of the Lower Body Configuration and Mass Dis-
tribution

In this subsection, we study the effect of the lower body
mass distribution and the inter-leg angle at impact g, . It is im-
portant to point out that this angle completely defines the geom-
etry of the two legs of the biped at heel strike, since for that event
the following geometric relationship holds, g5 = ¢, /2. We con-
sider the following range of possible values for the inter-leg angle
at impact ¢, € [10°, 50°].

As for the lower body mass distribution, it will be accounted

for using different values of parameter u between 0 and 2. A
value of u = 0 means that all the lower body mass is concen-
trated at the hip, and u = 2 means that m = my. We consider the
following mass of the torso, mr = 10 kg. We will also consider
that the upper body is placed perpendicular to the ground, there-
fore its absolute angle with respect to the vertical (y-axis of the
inertial frame) is g5 — g5 = 0, which establishes that g5 = g5.

Figure 2 shows the value of vgrn as a function of ¢, and pu.
It can be seen that for high values of g, and u, there are situa-
tions that do not satisfy the aforementioned condition of natural
stance foot separation (vgn > 0). The area for the satisfaction of
this condition is indicated with a white dashed line in the bot-
tom graphic of Fig. 2. It can be concluded that a low value of
u (mass concentrated at the upper part of the leg) is better in or-
der to have a larger range of valid configurations for which the
stance foot lifts up. For u = 0 (mass concentrated at the hip), all
the considered inter-leg angles are valid.

Figure 3 shows the pre-impact decoupling of the kinetic en-
ergy for the conditions that satisfy v;rn > (), this is the reason why
the curves of the figure do not cover the same range of angles.
The graphics of this figure indicate the part of the pre-impact ki-

q; (deg) 50 0

0.2

0.1

20 30 40 50
qj (deg)

Figure 2. POST-IMPACT VELOCITY v;; (m/s) AS A FUNCTION OF
THE INTER-LEG ANGLE AND PARAMETER .
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Figure 3. DECOMPOSED PARTS OF THE KINETIC ENERGY AS
FUNCTIONS OF THE INTER-LEG ANGLE AND PARAMETER .

netic energy that is lost, 7", and the part that stays in the system
T, =T".

Figure 4 shows the two indexes defined in Eqn. (23). The
first of them, &;, shows the ratio of the total pre-impact kinetic
energy that is lost at impact. It can be seen that for a given inter-
leg angle a low value of u yields better results in terms of impact
efficiency, since this index is lower. Also, from the same figure it
can be noticed that short steps (low value of g, ) are better than
longer steps in terms of energetic efficiency. Nevertheless, it has
to be taken into account that in such a case more steps, and also
heel strikes, are required to walk a certain distance.

Index &, can be used to evaluate energetic aspects for a given
finite distance the walker should travel and its evolution can be
seen in the bottom graphic of Fig. 4. It allows to conclude that for
a given value of y, it is better to walk a certain distance with more
short steps than with less long steps. This completely agrees with
the conclusions of [13] and [11], but looking at the problem from
a different point of view. In [13], the energetics of walking of a
powered straight-legged walker was analyzed using two different
types of actuation (impulse at toe-off and torque applied on the
stance leg). The work concluded that in either type of actuation
shorter steps required less actuation energy. The same conclu-

0.6[=
-==p=0

£, (Iim)

Figure 4. ENERGETIC INDEXES AS FUNCTIONS OF THE INTER-
LEG ANGLE AND PARAMETER p.

sion was reached in [11], but in this case the metabolic cost of
walking was measured from real subjects performing different
step lengths.

From Fig. 4, it can also be seen that a higher value of u is
better to reduce the energetic losses per unit distance for a given
configuration. This may seem to be in contradiction with the
conclusions reached from &;. However, the reason is that the
higher u is, the lower the position of the centre of mass of the
system becomes, and therefore, the total kinetic energy at the pre-
impact time is less (for a fixed angular velocity ¢5 ). Therefore,
although a low value of u provides locally more efficient impacts
(&7 lower), a high value of u would be better in order to reduce
the energetic expenditure per unit distance, since in such a case
less energy is required to walk.

Effects of the Upper Body Configuration and Mass Dis-
tribution

In this subsection, we analyze how the upper body of the
walker affects the dynamics of heel strike. For this purpose, we
will study impacts for a usual inter-leg angle of g, = 30°, and
therefore for a fixed step length. The influence of the configu-
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q, (deg)

Figure 5. POST-IMPACT VELOCITY v;n (m/s) AS A FUNCTION OF
THE TORSO ANGLE AND PARAMETER ur.

ration of the upper body will be studied by varying angle g5 in
the following range [0°,30°]. That is, configurations between
upper body completely aligned with the pre-impact stance leg
(g5 = 0°) and upper body completely aligned with the colliding
leg (g5 = 30°). As for the mass distribution, it will be accounted
for using different values of parameter ur between 0 and 2, with
a constant mass of the legs m = 5 kg. A value of ur = 0 means
that all the upper body mass is concentrated at the hip, and ur =2
means that my = 2my.

The post-impact normal velocity of the stance foot vgrn is
shown in Fig. 5. In such a case it can be seen that the condition
v;fn > 0 is satisfied regardless of g5 and ur. It can be seen that
the higher values of v;n are obtained when the value of ur is low
(mr ~0) and g5 is high.

Figure 6 shows the kinetic energy decoupling at heel strike.
Two main conclusions arise regarding the influence of the upper
body. First, for a given mass distribution u7 it can be seen that the
minimum pre-impact kinetic energy associated with the space of
constrained motion 7, is achieved for qs = 0°. Then, T~ grows
with higher values of angle g5 . As opposed to this, the pre-
impact kinetic energy of the space of admissible motion has its

24—

@)

Figure 6. DECOMPOSED PARTS OF THE KINETIC ENERGY AS
FUNCTIONS OF THE TORSO ANGLE AND PARAMETER pr.

maximum at g5 = 0° and then it decreases. This holds for all the
values of ur with the exception of ur = 0, which would mean
that all the mass is concentrated at the hip (this is the case of a
compass-gait walker without upper body).

Based on this, it can be concluded that in order to reduce
the energetic losses at heel strike, the upper body should be lean-
ing forward when the system undergoes heel strike impact. It is
worth noting that this conclusion is also supported by [22], in
which the complete gait of a straight-legged walker with upper
body was optimized. The obtained optimal joint-angle evolution
shows an upper body configuration inclined forward aligned with
the non-colliding leg at the end of the gait (heel strike).

The second conclusion that can be drawn form the results in
Fig. 6 is that increasing mr with respect to mg (higher ur) yields
better results in terms of energetic cost, since 7, is lower for an
specific biped configuration. It can also be seen that the influence
of ur is smaller when g5 increases. For g5 = 30°, the values of
T, and 7, are almost equal for any value of ur.

Figure 7 shows the energetic indexes &; and &;. The ob-
tained curves are proportional to 7~ since both the pre-impact
kinetic energy 7~ and the step length L are constant for all the
upper body configurations and values of ur. Therefore, the con-

Copyright (© 2008 by ASME



0.32/—

0.3f

w 0.26F

0.241

0.221

0.2}

5.61
5.4¢
521

(J3/m)

4.81
— 4.6
4.4r
4.2r

&

3.8f

6 5 1b 15 2‘0 2‘5 36
g, (deg)

Figure 7.  ENERGETIC INDEXES AS FUNCTIONS OF THE TORSO
ANGLE AND PARAMETER ur.

clusions that can be drawn have the same nature as was already
discussed above for 7, (Fig. 6).

CONCLUSIONS

In this paper we presented a novel formulation to analyze
the impulsive dynamics of the heel strike event in dynamic walk-
ing systems. Based on the impulsive constraints that character-
ize this event, the formulation allows to decouple the impulse-
momentum level dynamic equations and the kinetic energy of
the system to the spaces of constrained and admissible motions.
The decomposition of the pre-impact kinetic energy appears to
be a useful concept to study the energetics of heel strike. The
kinetic energy of the space of constrained motion is completely
lost at impact and, conversely, the part associated with the space
of admissible motion stays in the system.

The formulation was applied to a straight-legged biped with
point-foot and an upper body. The effects of the mass distribution
and the impact configuration of the system on the kinetic energy
decomposition at impact were analyzed. The obtained results can
give rise to useful information regarding the energetic aspects
of impacts in walking, both for the design of efficient walking

machines and to get insight into the mechanical aspects of human
locomotion. Among the conclusions reached from the results, the
following deserve being highlighted:

(i) Concentrating the mass of the lower body at the hip in-
creases the range of inter-leg angles for which the stance
foot passively lifts up from the ground.

(if) The energetic losses are lower if the biped walks a certain
distance with short steps rather than long steps.

(iii) The upper body has a significant effect on the energetics of
walking. Leaning it forward aligned with the stance leg re-
duces the energetic losses at heel strike.

The presented technique can provide a better understand-
ing of the velocity change and energy redistribution at heel
strike. Furthermore, this approach is valid for any walking sys-
tem whose configuration is described by a general non-minimum
set of generalized coordinates. We believe that it can be of con-
siderable value in the areas of dynamic analysis, mechanical de-
sign and control of dynamic walking systems. Its application
can also be of interest to analyze the dynamics of physiological
multibody models of the human musculoskeletal system.
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Appendix A: Elements of the Dynamic Model
For the biped considered in Fig. 1, the Jacobian associated
with the right foot Pg can we written as

10000
AR:{OIOOO}’ 4
and the one for the left foot P, has the expression

A — 1 0 Icosqs—Icos(ga—q3) lcos(qa—q3) O 25)
=10 1 —Isings —Isin(gs —q3) Isin(qgs—q3) O

The elements of the mass matrix M can be derived by ex-
panding Eqn. (5). Its expression is known to have the following
symmetric form

My My Mz Mgy Mis
My Maz May Mos
M3z M3q Mss |, (26)
Mayy Mys
Sym. M55

where the fifteen independent elements have the expressions

My = 2m+my +mr,

My =0,

M3 = ((m+mpy +mr)l +ma)cosqs —mbcos (q4 — q3)+
...+ mrlr cos (g5 —q3),

My = mbcos(qs — q3),

Mys = —mrly cos (g5 — q3),

My = 2m+my +mr,

Myz = — ((m+my +mr)l+ma)sings —mbsin (qs — q3)+
...+ mylysin (C]S — qg),

M24 mbsin(q4—q3),

Mss = —mrlrsin(gs — q3),

M3z = m(a* +b* + 1) + myl> + my (I +1}) — 2mbl cos g4+
...+ 2mrlylcosgs,

M3y = 7mb2+mblC0Sq4,

M3s = —mrlr (Ir +1cosgs),

Myy = mb?,
Mys =0,
M55 = mrl%.
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