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József Kövecses
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ABSTRACT
Mechanical systems with time-varying topology appear fre-

quently in various applications. In this paper, topology changes
that can be modeled by means of bilateral impulsive constraints
are analyzed. We present a concept to project kinematic and ki-
netic quantities to two mutually orthogonal subspaces of the tan-
gent space of the mechanical system. This can be used to obtain
decoupled formulations of the kinetic energy and the dynamic
equations at topology transition. It will be shown that the config-
uration of the multibody system at topology change significantly
influences the projection of non-ideal forces to both subspaces.
Experimental analysis, using a dual-pantograph robotic proto-
type interacting with a stiff environment, is presented to illustrate
the material.

NOMENCLATURE
A Jacobian associated with constrained motion.
B Jacobian associated with tangential directions of contact.
M Mass matrix of the system.
Pa Projector associated with the space of admissible motion.
Pc Projector associated with the space of constrained motion.
q Generalized coordinates of the system.
v Generalized velocities of the system.
va Generalized velocities of the space of admissible motion.
vc Generalized velocities of the space of constrained motion.

∗Address all correspondence to this author.

f̄A Generalized applied impulses.
f̄N Generalized non-ideal impulses.
f̄R Generalized constraint impulses.
T Kinetic energy of the system.
Ta Kinetic energy of the space of admissible motion.
Tc Kinetic energy of the space of constrained motion.

INTRODUCTION
Variable topology mechanical systems are present in various

fields of applications such as robotics, biomechanics and mecha-
nism science. The dynamic analysis of such systems depends on
the time-varying nature of the connections between the elements
of the system and the environment. This complicates the analysis
because in most cases a different dynamic model must be devel-
oped for each constraint condition. Typical situations that occur
in variable topology systems are the following:

(1) The number of degrees of freedom of the system decreases
via the development of certain connections. An example
for this can be the grasping/capturing of a moving pay-
load, which may also represent the interaction of two robotic
mechanisms, or a human and a payload. The effect of mass
capture on flexible multibody systems was studied in [1]
and [2]. This group of problems includes two possibilities
depending on whether the developed connections exist for a
finite period of time or they represent an instantaneous situ-
ation.
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(2) The constraint configuration is changing: some constraints
are added and some become passive. But, the effective num-
ber of degrees of freedom may stay the same. An exam-
ple for this situation can be found in the analysis of (ac-
tive/passive) dynamic walking machines [3]. In those sys-
tems, the heel strike event represents a sudden change of
topology where some constraints are imposed on the foot
that makes contact, and other are released from the foot that
leaves the ground [4, 5].

Discontinuous constraints have been a known concept in an-
alytical mechanics [6–8]. As discussed earlier, two particular
cases of such discontinuous constraint configurations can be the
sudden removal and the sudden addition of constraints. The sud-
den removal of constraints alone does not instantaneously change
the energy and momentum distribution of the system unless other
impulsive forces (applied or constraint forces) are present.

The sudden addition of constraints does cause instantaneous
changes. Therefore, this is the truly critical event during the mo-
tion of variable topology systems. Such events can be charac-
terized using “inert constraints” which are a class of impulsive
constraints [6, 8].

This paper focuses on this event of sudden addition of con-
straints. We consider the general case of non-ideal development
of constraints, i.e., we consider that impulsive forces can also
be present along the tangential direction of the contact, e.g., due
to friction or finite tangential stiffness of materials. It is not the
aim of the work to model these impulses, but to understand their
effect on the impulsive dynamics of topology transition.

The dynamic analysis conducted in the paper is based on
an analytical approach that allows a complete decoupling of the
dynamic equations and the kinetic energy to two subspaces of the
tangent space of the system, i.e., the spaces of constrained and
admissible motions [9]. Based on this approach, it will be shown
that the effects of non-ideal impulsive forces on the decoupled
dynamic equations vary depending on the system configuration
at topology transition. To illustrate this, detailed experimental
analysis using a dual-pantograph robotic device is conducted.

DYNAMICS MODELING
Let us consider that the configuration of the system can be

described by n generalized coordinates that are represented by
n× 1 dimensional array q. The time derivatives of these gener-
alized coordinates q̇ give a possible set of generalized velocities
of the system. We will use a more general description for the
velocities employing components collected in v, which can be
interpreted as general linear combinations of the time derivatives
of the generalized coordinates as v = Nq̇ and q̇ = N−1v, where
N is an n×n transformation matrix that can depend on the gen-
eralized coordinates and time. We will consider that this param-
eterization represents a minimum set of generalized coordinates

and velocities with respect to the continuous constraints imposed
on the system.

In this paper, we will primarily consider systems where the
kinetic energy can be expressed as a quadratic function of the
generalized velocities

T =
1
2

vT Mv (1)

where M(q) is the mass matrix of the system. The dynamic equa-
tions for parameterization (v, q) can generally be written as

Mv̇+ c(v,q) = fA + fR + fN (2)

where c(v,q) represents the Coriolis and centrifugal effects, fA
and fR are the generalized applied and constraint forces, and fN
represents generalized non-ideal forces that may arise due to the
non-ideal realization of constraints. The explicit expressions of
the generalized constraint and non-ideal forces fR and fN will be
associated with discontinuous impulsive constraints only.

Let us consider that ti represents the time when certain con-
straints are suddenly established and, as a result, the topology of
the system changes. This sudden addition/imposition of physical
connections can be modeled by means of inert constraints [6, 8].

The event of topology transition takes place in the [t−i , t+i ]
interval, where t−i and t+i represent the so-called pre- and post-
event instants. The duration of this interval can usually be con-
sidered very short on the characteristic time scale of the finite
(continuous) motion of the system. Therefore, the configuration
of the system is assumed to be constant in [t−i , t+i ], and the event
of topology change is analyzed as an impulsive motion event.
Inert constraints can normally be written as

Av+ = 0 (3)

where v+ stands for v at t+i , and A is the m× n dimensional
constraint Jacobian. Note that Eq. (3) represents the required
topology of the mechanical system at t+i at the velocity level.

Two typical situations may arise depending on whether the
new constraints persist for a finite period of time or they represent
an instantaneous situation. One example for the first situation
appears in bipedal locomotion when the swing leg makes contact
with the ground at heel strike. The dynamics of heel strike in
a bipedal compass walker with upper body was analyzed by the
authors in [10].

For the second situation, an example can be the general con-
sideration of low velocity impact between two bodies when the
duration of the impact “looks” instantaneous on the character-
istic time scale determined by the finite motion of the system.
Such impact can be divided to two phases (namely, compression
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and restitution phases) and the system configuration is usually as-
sumed constant during the whole event. The compression phase
can be modeled with constraints of the form of Eq. (3), where
v+ denotes the generalized velocities at the end of compression
when the relative normal velocity of the contact points is zero.
This case will be experimentally analyzed further in this paper.

Projection Operators and Decomposition
The tangent space of the dynamic system can be seen as

an n dimensional linear space interpreted for each configuration
[11, 12]. Since the configuration of the system is assumed to be
unchanged in the [t−i , t+i ] interval, a single interpretation of this
linear space may be used for both the pre- and post-event instants.
The inert constraints and their Jacobian A can be employed to
decompose this tangent space to the space of constrained motion
(SCM) and space of admissible motion (SAM) [9].

The above two subspaces can be defined so that they are
orthogonal to each other with respect to the mass metric of the
tangent space [9, 13]. In this case, any impulsive event charac-
terized by ideal inert constraints of the form of Eq. (3) will in-
fluence quantities in the space of constrained motion leaving the
space of admissible motion unaffected. However, non-ideal ef-
fects can couple the two subspaces and develop an influence on
the admissible motion dynamics too. The decomposition to the
two subspaces can be accomplished using two projection opera-
tors Pc (for the SCM) and Pa (for the SAM) [9, 13]. They take
the following expressions

Pc = M−1AT (
AM−1AT )−1 A (4)

Pa = I−Pc = I−M−1AT (
AM−1AT )−1 A (5)

where I is the n× n dimensional identity matrix. It can be seen
that the projectors above satisfy that PT

a MPc = 0, where 0 de-
notes the n× n zero matrix. This shows the orthogonality of Pc
and Pa with respect to the mass metric M.

Using the above operators, the generalized velocities of the
system can be decomposed as

v = vc +va = Pcv+Pav (6)

where vc = Pcv and va = Pav represent the two components as-
sociated with the SCM and SAM, respectively. Based on Eq. (6),
it can be seen that the kinetic energy can also be decomposed as

T = Tc +Ta =
1
2

vT
c Mvc +

1
2

vT
a Mva (7)

which represents a complete decoupling of T [9, 13]. To obtain
Eq. (7) it was used that vT

a Mvc = 0, which is a direct consequence
of the orthogonality of the projectors with respect to M. Any
vector of generalized forces or generalized impulses can also be
decomposed using the transpose of Pc and Pa as

f = fc + fa = PT
c f+PT

a f and f̄ = f̄c + f̄a = PT
c f̄+PT

a f̄ (8)

where f̄ represents the impulse of f. It is also possible to show
that fT

a M−1fc = 0 and f̄T
a M−1f̄c = 0 hold for the general case.

CHARACTERIZATION OF TOPOLOGY TRANSITIONS
WITH NON-IDEAL CONSTRAINT REALIZATION

The dynamics of the instantaneous imposition of constraints
can be characterized by impulse-momentum level dynamic equa-
tions. Based on Eqs. (1) and (2), these can be obtained in general
form as [8, 14]

[
∂T
∂v

]+

−
= M

(
v+−v−

)
= f̄A + f̄R + f̄N (9)

where “−” and “+” denote the pre- and post-event instants, f̄A,
f̄R and f̄N are the impulses of the generalized applied, constraint,
and non-ideal forces, respectively. If the applied forces are non-
impulsive, then f̄A = 0. This is the case we primarily consider
to gain insight into the effect of inert constraints representing the
topology change. The generalized constraint impulses responsi-
ble for the topology change can be written as

f̄R = AT λ̄ (10)

where λ̄ represents the impulse of the normal contact forces de-
veloped during this event and A is the Jacobian in Eq. (3). The
impulses of the generalized non-ideal forces can usually be ex-
pressed with force laws such as f̄N = f̄N(λ̄,v,q). If we name B
the Jacobian associated with tangential directions of the contact
(i.e., Bv are velocity components of the contact point along di-
rections where motion is not constrained) then the generalized
non-ideal impulses can be expressed as

f̄N = BT β̄ (11)

where β̄ represents the impulse of the non-ideal forces developed
along the tangential directions.

Based on the decompositions introduced in the previous sec-
tion, the impulsive dynamic equations provided in Eq. (9) can be
decoupled by multiplying both sides of the equation with PT

c and
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PT
a . The dynamic equations associated with the SCM and the

SAM can be respectively expressed as

[
∂Tc

∂vc

]+

−
= M

(
v+

c −v−c
)

= AT λ̄+PT
c BT β̄ (12)

[
∂Ta

∂va

]+

−
= M

(
v+

a −v−a
)

= PT
a BT β̄ (13)

Note that to obtain the last equations it was used that
PT

c AT = AT and PT
a AT = 0, this comes directly from the defi-

nition of projection operators in Eqs. (4) and (5). Eq. (12) can
also be rewritten as

[
∂Tc

∂vc

]+

−
= M

(
v+

c −v−c
)

= AT (λ̄+ Λ̄) (14)

where PT
c fT

N = AT Λ̄ [9]. The decoupled equations provide use-
ful information to analyze the dynamics of topology transitions.
First of all, it can be seen that constraint impulses f̄R are fully pro-
jected to the SCM and, therefore, only impulses due to non-ideal
phenomena are present in the equation associated with the SAM.
However, non-ideal impulses may have a projection to both the
SCM and SAM. Also, based on Eqs. (14), (3) and (6), it can be
shown that v+

c = 0. Therefore, using Eq. (14) we obtain that

−Mv−c = AT (λ̄+ Λ̄) (15)

Regarding the energetics of the transition, it can be con-
cluded that no matter how much kinetic energy is contained in
the SCM at the pre-event time, this will be completely “lost”
during topology change since v+

c = 0 and therefore T +
c = 0. Ac-

cording to Eq. (13), the kinetic energy of the SAM can change
during topology transition due to non-ideal impulses. In the case
of ideal transition, i.e., f̄N = 0, then v+ = v+

a = v−a and thus
T + = T +

a = T−a . In such a case, the total energy loss due to the
sudden addition of constraints would be T−c . However, the pres-
ence of non-ideal impulsive forces can make the kinetic energy
Ta vary during the transition interval [t−i , t+i ].

Finally, based on Eqs. (6), (7) and (15), and using that
vT

a Mvc = 0, it is possible to write that

−(v−)T Mv−c =−2T−c = (v−)T AT (λ̄+ Λ̄) (16)

which establishes an explicit relationship between the magnitude
of the impulses generated at topology change and the pre-event
kinetic energy content in the SCM, T−c . As said before, this is
completely lost once the constraint is established and Eq. (3) sat-
isfied.

passive device

active device

Figure 1. Experimental set-up based on two dual-pantograph devices

EXPERIMENTAL SET-UP
An experimental testbed based on two dual-pantograph de-

vices has been used to investigate the concepts introduced earlier
in this paper. This is shown in Fig. 1. Each device is equipped
with high-resolution force/torque sensors at the tip and optical
encoders at the motor joints. For our present study, one of these
devices (passive device) emulates a stiff environment with a flat
surface and the other (active device) comes to a contact interac-
tion with the passive one at one single contact point. An inter-
face with a conical shape is mounted onto the end effector of the
active device to ensure point contact with the flat end plate of
the passive system. The compression phase associated with this
interaction represents a topology transition that can be modeled
with inert constraints.

Although a single device can move the end effector with the
6-DOF of general 3D motion, the trajectories performed have
been programmed so that the motion of the system can be con-
sidered planar. The planes of the two pantographs are parallel so
they can be considered with one single “composite” pantograph
model, Fig. 2. As it can be seen in this figure, angles qi denote
the absolute orientation of the ith link (i = 1,2,3,4) of the pan-
tograph.

Regarding the parameters of the system, li and ai represent
the length and the position of the center of mass of the ith link, mi
and Ii denote its mass and moment of inertia about its center of
mass, and mEE denotes the mass of the end effector. Parameter
l5 indicates the distance between the two motors. The value for
these parameters can be found in Table 1.

For planar motion, the system can be considered as a 2-DOF
mechanism and the actuated joint coordinates q = [q1 q3]T and
their time derivatives v = q̇ may be used as independent gener-
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Figure 2. Planar dynamic model of the pantograph

alized coordinates and velocities, respectively. Using this repre-
sentation, the mass matrix M has been determined.

Since in the experiments the flat end plate of the passive de-
vice has a normal parallel to the y axis, the topology transition
can be represented with one inert constraint that describes the
sudden imposition of the physical contact constraint on the end
point velocity of the active device along the y direction. There-
fore, we can express this constraint as ẏ+

EE = Av+ = 0. Jacobian
B is associated with the motion of the end point along the “un-
constrained” x direction. From Jacobians A and B, the velocity

Table 1. Dynamic parameters of the pantograph

Parameter Value Description

l1, l3 0.1449 m Length of links 1,3

l2, l4 0.1984 m Length of links 2,4

a1, a3 0.0519 m Position of COM of links 1,3

a2, a4 0.1081 m Position of COM of links 2,4

l5 0.0445 m Dist. between actuated joints

m1, m3 0.1202 kg Mass of links 1,3

m2, m4 0.1084 kg Mass of links 2,4

mEE 0.3144 kg Mass of end effector

I1, I3 0.0004 kgm2 Moment of inertia of links 1,3

I2, I4 0.0007 kgm2 Moment of inertia of links 2,4

0.225 m

passive device

vEE
λ

β
_

_
_

γ

d

d = 0 m 

d = 0.1 m

d = 0.2 m

y

x

Figure 3. Experimental conditions

vEE of the end point in inertial frame coordinates is

vEE =
[

ẋEE
ẏEE

]
=

[
B
A

]
v (17)

We have developed experiments to test the influence of the
system configuration on the dynamics of the topology transition.
We have considered three different configurations obtained by
modifying parameter d, shown in Fig. 3, which takes the follow-
ing three values: d = 0 m, d = 0.1 m, and d = 0.2 m. For each
contact configuration, the velocities v at t−i have been defined
such that the velocity of the end effector forms an angle γ with
the x direction (see Fig. 3) and T−c is constant for all the exper-
imental conditions. Two angles have been considered for each
configuration: γ = 90◦ (velocity perpendicular to the stiff wall)
and γ = 60◦.

A normal impulse λ̄ is generated due to the imposition of
the constraint in the normal direction. Also, a non-ideal im-
pulse β̄ appears along the tangential direction due to friction and
tangential stiffness of the contact. These impulses are repre-
sented in Fig. 3 and they have been measured for each experi-
mental condition integrating the force measurements over inter-
val [t−i , t+i ]. The numerical integration has been done via the
trapezoidal method using the sample time of the data acquisition
system, i.e., ∆t = 0.001 s.

An interesting parameter that will be evaluated in the follow-
ing is the ratio ξ between the pre-event kinetic energy associated
with the SCM (which is lost) and the total pre-event kinetic en-
ergy of the system. This can be expressed as

ξ =
T−c
T−

=
(v−)T PT

c MPcv−

(v−)T Mv−
(18)

and gives information on what part of the initial kinetic energy
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is required to develop the constraint forces. This parameter has
two extreme values (0 and 1) which are associated with different
directions of the tangent space of the multibody system. These
directions can be obtained via the formulation of an eigenvalue
problem as it is explained in [15].

RESULTS AND DISCUSSION
The following results have been obtained using the robotic

system described above. Six different experimental conditions
have been tested: d = 0 m and γ = 90◦, d = 0 m and γ = 60◦,
d = 0.1 m and γ = 90◦, d = 0.1 m and γ = 60◦, d = 0.2 m and
γ = 90◦, and d = 0.2 m and γ = 60◦. These are named cases
1 to 6, respectively. Each experiment has been repeated sev-
eral times and the results averaged to obtain better estimations
of them. Fig. 4 shows the evolution of the kinetic energy decom-
position (Tc and Ta) for one individual experiment corresponding
to each case. The white spots in the plots indicate the consid-
ered values of Tc and Ta at t−i (just before contact) and t+i (end of
compression). Note that the obtained value of Tc at t+i is zero in
all cases, this represents the instant when the inert constraint is
established, ẏ+

EE = 0. In the plots that correspond to cases 1 and
3, it can be seen that Ta is almost zero during all the experiment.

Table 2 shows the results for the pre- and post-event kinetic
energy redistribution for each case. It can be seen that T +

c ≈ 0 (as
expected) and that Ta varies in cases 2, 4, and 6 due to the appear-
ance of non-ideal forces during contact (such cases are the ones
with γ = 60◦). In cases 1, 3, and 5; non-ideal effects are lower
because ẋ−EE = 0 (γ = 90◦) and Ta experiences less change. As
it will be shown the tangential impulse β̄ is lower when γ = 90◦.
Parameter ξ gives the proportion of the pre-impact kinetic energy
that is projected to the SCM, Eq. (18). As shown before, this part
of the kinetic energy is lost when constraints are imposed. It can
be seen that ξ depends both on configuration q and velocities v−.

Table 3 shows the measured impulses λ̄ and β̄. It can be
seen that for cases 2, 4, and 6 the impulse β̄ along the tangential
direction is larger than in the other cases. The negative sign of
the impulse is due to fact that ẋEE > 0 during the contact interval

Table 2. Kinetic energy decomposition Tc and Ta, and parameter ξ
Case T−c (mJ) T−a (mJ) T +

c (mJ) T +
a (mJ) ξ

1 9.30 4.4·10−3 3.2·10−3 2·10−3 1.00

2 9.26 3.28 4.9·10−3 2.81 0.75

3 9.34 6.7·10−4 4.7·10−3 2.4·10−4 1.00

4 9.10 3.12 1.6·10−3 2.85 0.74

5 9.33 0.144 6.6·10−3 0.130 0.98

6 9.30 4.54 2.9·10−3 4.06 0.66

Table 3. Measured impulses λ̄ and β̄
Case λ̄ (N·ms) β̄ (N·ms)

1 114.74 0.81

2 113.60 -3.65

3 116.09 0.63

4 114.02 -3.26

5 121.38 0.53

6 119.28 -3.94

and therefore tangential force is opposed to that velocity. This
force may have various sources, e.g., friction or even tangential
stiffness. However, the normal impulse λ̄ does not change sig-
nificantly from one case to the other.

Based on Eqs. (12) and (13), it can be seen that the constraint
impulse is fully projected to the SCM, whereas the non-ideal im-
pulsive force can couple the dynamics of both subspaces (SCM
and SAM). The effect of non-ideal impulses depends on the pro-
jections PT

c BT and PT
a BT , which depend on the configuration of

the multibody system at topology change.
We analyzed three different configurations depending on

parameter d. For the first configuration (d = 0 m, cases 1-
2) the generalized non-ideal impulse f̄N = BT β̄ is fully pro-
jected to the SAM because PT

c BT = 02×2 and PT
a BT = BT =

[−0.1027 −0.1235]T m. Note that for both cases (1 and 2) the
left-hand side of Eq. (12) is nominally the same,1 and thus the
expected value of λ̄ should also be the same. There is a small
difference between the impulse λ̄ measured for cases 1 and 2
owing to experimental uncertainty in measurements.

As for the second configuration (d = 0.1 m, cases 3-4), the
generalized tangential impulse is projected to the SCM and the
SAM. For those cases, the aforementioned projections are

PT
c BT =

[−0.0027
0.0009

]
m and PT

a BT =
[−0.0646
−0.1392

]
m (19)

Then, it can be seen that the value of β̄ is projected to both
the dynamic equations associated with the SCM, Eq. (12), and
the equations associated with the SAM, Eq. (13). The same hap-
pens for the last configuration (d = 0.2 m, cases 5-6). In such a
case

PT
c BT =

[−0.0192
−0.0027

]
m and PT

a BT =
[−0.0510
−0.1209

]
m (20)

1This is because the configuration is the same in both cases and T−c is kept
constant.
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Figure 4. Kinetic energy decomposition Tc, Ta during one individual impact

Note that the term PT
c BT increases in “magnitude” when pa-

rameter d increases. That is, the contribution of the impulse of
non-ideal forces on the equation governing the dynamics of the
SCM is more significant if the configuration of the mechanism
at topology transition is more asymmetric. In cases 5 and 6, the
left-hand side of Eq. (12) is nominally the same. The fact that
non-ideal impulse β̄ does have an influence on the SCM dynam-
ics may explain the difference between the measurement of the
normal impulse in both cases. This can be observed based on the
results shown in Table 3.

Based on Eq. (13) it can be seen that the change in va –and
therefore in Ta– is only affected by non-ideal impulsive forces.
Cases 2, 4, and 6 are the ones where the tangential impulses
β̄ are higher (see Table 3). This is because for these cases the
velocity of the end effector at the pre-event time does have tan-
gential component and forces along that direction are present.
These impulses cause changes in va and, at the same time, make
the kinetic energy content of the SAM change between t−i and
t+i . This can be observed from the plots shown in Fig. 4 (for
individual impacts), and from the averaged results presented in
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Table 2. Note that in all these cases (2, 4, and 6), T +
a < T−a , i.e.,

the kinetic energy of the SAM decreases owing to the tangential
contact impulses developed during topology transition.

CONCLUSIONS
In this paper we developed a method for the analysis of

topology transitions that can be modeled by means of bilateral
impulsive constraints. The Jacobian of such constraints was used
to define subspaces of the tangent space of the system, namely
the “space of constrained motion” and the “space of admissible
motion”.

A decoupling of the impulsive dynamic equations character-
izing the event of topology change and the kinetic energy of the
system was obtained. This provides useful insight for the analy-
sis of kinetic energy redistribution when constraints are suddenly
imposed. We paid particular attention on the projection of non-
ideal impulses to the aforementioned subspaces, and showed that
such impulses may couple the dynamics in these spaces. It was
also shown that the influence of non-ideal impulses on the dy-
namics associated with the space of constrained motion varies
depending on the system configuration at topology change.

The presented concepts were experimentally analyzed us-
ing an instrumented robotic multibody system undergoing im-
pact with different configurations and velocities. Detailed ex-
perimental results and discussions are presented to support and
validate the concepts introduced. In this paper we considered
the case of having independent constraints. Nevertheless, there
may be practical situations where the constraints generated can
depend on each other (redundant constraints). This issue will be
further addressed in upcoming future publications.
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Dynamic Walking: Design Strategies to Reduce Energetic
Losses of a Compass Walker at Heel Strike,” Mechanics
Based Design of Structures and Machines, 37(3).

[11] Blajer, W., 1997, “A Geometric Unification of Constrained
System Dynamics,” Multibody System Dynamics, 7(1), pp.
3-21.
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