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ABSTRACT 
Localization is one of the fundamental problems in mobile 

robot navigation. Several approaches to cope with the dynamic 
positioning problem have been made. Most of them use an 
extended Kalman filter (EKF) to estimate the robot pose           
–position and orientation– fusing both the robot odometry and 
external measurements.  

In this paper, an EKF is used to estimate the angles, 
relative to the robot frame, of the straight lines from a rotating 
laser scanner to a set of landmarks. By using this method 
angles are predicted, between actual laser measurements, by 
means of the time integration of its time derivative, which 
depends upon the robot kinematics. Once these angles are 
estimated, triangulation can be consistently applied at any time 
to determine the robot pose. In this work, a mobile robot with 
three omnidirectional wheels –that consist of two spherical 
rollers– is considered. Computer simulations showing the 
accuracy of this method are presented. 

INTRODUCTION 
Mobile robots are increasingly used in flexible 

manufacturing industry and service environments. To achieve 
an autonomous operation, mobile robots must include a 
localization –or positioning– system in order to accurately 
estimate the robot pose –position and orientation– [1]. 
Nowadays, localization is one of the fundamental problems in 
mobile robot navigation.  

In the last two decades, a number of different approaches 
have been proposed to solve the localization problem. These 
can be classified into two groups [2]: relative and absolute 
localization methods.  

In relative localization, dead reckoning methods              
–odometry and inertial navigation– are used to calculate the 
robot position and orientation from a known initial pose. 
Odometry is a widely used localization method because of its 
low cost, high updating rate, and reasonable short path 
accuracy. However, its unbounded growth of time integration 
errors with the distance travelled by the robot is unavoidable 
and represents a significant inconvenience [3]. Several 
approaches have been done to cope with the odometry error 
propagation [4, 5]. 

Conversely, absolute localization methods estimate the 
robot position and orientation by detecting distinct features of a 
known environment. Most of the work published integrates a 
prediction phase, based on the odometric data and the robot 
kinematics, and a correction –or estimation– phase that takes 
into account external measurements. The most used methods 
are based on Kalman filtering [6-8] and Bayesian localization 
[9, 10]. Bayesian localization methods are robust to complex 
and badly mapped environments, but are in general less 
accurate. Finally, other authors deal with absolute localization 
using bounded-error state estimation applying interval analysis 
such in [11].  

In this paper, an extended Kalman filter (EKF) is used to 
estimate in real time the angles –relative to the robot frame– of 
the straight lines from the sensor (a rotating laser scanner in 
this case) to a set of landmarks. Then, by means of 
triangulation, which refers to any process which solves a 
system of simultaneous algebraic or transcendental equations              
–whether or not they are reducible to an equivalent problem 
involving triangles– [12], the robot localization can be 
consistently determined at any time.  
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In mobile robotics, triangulation occurs often in the 
context of artificial landmarks. However, any natural aspects of 
the environment –such as walls or corners– whose positions are 
known, and are detected by a sensor whose indications depend 
on their position relative to the sensor, establish a triangulation 
context.  

This approach is an extension of the method presented in 
[13], in which the odometry and laser sensor errors were not 
taken into account to predict the landmark angles for a tricycle 
type mobile robot with conventional wheels. In the work 
presented in [14], the sensor errors are considered and the use 
of a Kalman filter is proposed to predict the landmark angles 
for the same tricycle type industrial mobile robot. 

In this paper, a mobile robot with three omnidirectional 
wheels equipped with a laser localization system is considered. 
Each omnidirectional wheel consists of two spherical rollers 
actuated by a single motor. The three motors allow the control 
of the three DOF of the robot plane movement.  

The laser localization system consists of a rotating laser 
scanner and a set of catadioptric landmarks strategically placed. 
The scanner emits a laser beam that horizontally sweeps the 
environment and reflects back when it detects a landmark. 
Then, the angle of the reflected beam relative to the robot 
frame is measured. 

In the following section, the triangulation methods for 
mobile robot localization and their properties are described. 
Next, the kinematics of the considered robot with 
omnidirectional wheels is presented and used to obtain the 
expressions for the angular state odometry. From these 
expressions, the dynamic angular state estimator is derived. 
Finally, computer simulations showing the positioning accuracy 
of the presented method –which is compared to other existing 
localization approaches– are reported. 

 

TRIANGULATION BASED ROBOT LOCALIZATION 
By means of triangulation it is possible to determine the 

robot position and orientation from the landmarks position and 
the measured angles θ1, θ2 and θ3 –relative to the robot 
longitudinal axis– for three of them, Fig. 1 [15, 16]. As the 
accuracy of triangulation algorithms depends upon the point of 
observation and the landmark arrangements [15], more than 
three landmarks can also be used to improve the positioning 
accuracy [17, 18]. 

In this paper, a laser positioning system has been 
considered. The main advantage of this system is its high 
positioning accuracy inside the workspace which is required in 
certain practical situations. This system consists of a rotating 
laser scanner and a group of catadioptric landmarks 
strategically placed. The laser scanner emits a rotating beam 
that sweeps the environment and reflects back when it detects a 
landmark Li. The system measures the angle θi of the reflected 
beam, relative to the vehicle longitudinal axis (Fig. 1), by 
means of an incremental encoder. 
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Fig. 1  The mobile robot pose can be calculated from 

landmarks position and angles θ1, θ2, θ3 by triangulation 
 
The consistent use of triangulation requires the relative 

angle to each landmark θi to be known at the same mobile robot 
pose, as it happens under static condition. However, this 
requirement is not fulfilled when robot moves because 
landmarks are detected at different poses of the robot, and 
therefore triangulation cannot be directly applied [19].  

To solve this problem several authors use recursive 
algorithms to fuse the robot odometric information and the 
laser external measurements in order to keep track of the robot 
pose. In [7] a Kalman filtering framework is used to fuse this 
data. Other approaches are based on alternative recursive 
algorithms that deal with nongaussian noise and deterministic 
errors [20]. 

In this paper, to cope with dynamic positioning, an 
extended Kalman filter –which takes into account the errors 
associated to odometry and the laser scanner– is used to 
estimate the relative angles θi(t). Between actual laser 
measurements angles are predicted by means of the time 
integration of its time derivative, which depends upon the robot 
kinematics [13]. Thus, a kind of “angular odometry” substitutes 
the usual odometry related to the robot pose, and allows the 
kinematically consistent use of triangulation. The angular state 
vector used in the EKF is: 

 

{ }T
1, 2, ,, ,...,k k k N kθ θ θ=x ,                        (1) 

 
instead of the conventional one xk = {xk, yk, ψk}T, which is 
obtained from the angular vector in Eq. (1) by means of 
triangulation. In Eq. (1), N represents the number of considered 
landmarks, in this case N = 3. 

One of the advantages of the angular odometry developed 
is that, as it gives an accurate real-time estimation of each angle 
θi, it allows setting a narrow validation gate for each landmark 
reflection. Angular measurements that do not fall in this 
validation gate are ignored. If a reflection does not arrive inside 
the validation gate the angular odometric prediction continues 
over one more laser revolution. Therefore, the system is robust 
to possible outliers –wrong laser reflections– detected by the 
laser sensor. 
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ROBOT KINEMATICS 
In this approach, a mobile robot with omnidirectional 

wheels, which consist of freely rotating spherical rollers, is 
considered. Figure 2 shows the real robot prototype   
SPHERIK-3x3. Each omnidirectional wheel is actuated by a 
single motor. The three motors allow the control of the three 
DOF of the robot plane movement. Figure 3 shows an 
omnidirectional wheel of the robot, with a free movement 
perpendicular to the actuated or motorized movement. 

This wheel, developed by Batlle and Fortuny [21], 
guarantees the invariance of the jacobian matrix J. This matrix 
relates the motor rotation velocities ωj (j = 1, 2, 3) with the 
longitudinal and transversal components of the velocity of P     
–vL and vT respectively– and the robot angular velocity ψ  (see 
Fig. 4): 
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where r, L, s and α are geometric parameters defined in Fig. 4. 
The inverse of the jacobian matrix J–1 yields the following 
expression, in which velocities vL, vT and ψ  are obtained from 
the motor rotation velocities ωj: 
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Fig. 2  Mobile robot SPHERIK-3x3 
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Fig. 3  Omnidirectional wheel that consists of two freely 

rotating spherical rollers 
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Fig. 4  Geometric and kinematical parameters of the mobile 

robot considered in Eq. (2) 
 

It must be noted that an estimation of the kinematical 
variables vL, vT and ψ  can be found at any time using Eq. (3), 
because the angular velocities ωj are measured by the motor 
encoders. 

As the SPHERIK-3x3 has the three degrees of freedom of 
the rigid body planar movement, it is a convenient platform to 
test different positioning techniques. 

ANGULAR ODOMETRY 
The solution presented to cope with triangulation under 

dynamic condition is based on the odometric calculation of the 
evolution of the angle –relative to the vehicle– of the straight 
lines from the laser scanner center to each landmark Li. In the 
considered robot, point P (Fig. 4) is the center of the laser 
scanner. 

If ρi stands for the distance between point P and the 
landmark Li, and θi is the angle between the robot longitudinal 
axis and the straight line from P to this landmark (Fig. 5), the 
time evolution of θi can be expressed, according to the vehicle 
kinematics, as: 

 
( )sin cosL i T i

i
i

v vθ θ
θ ψ

ρ
−

= − .              (4) 
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Fig. 5  Geometric variables ρi and θi associated with 

landmark Li. P is the center of the laser scanner 
 

Discrete time integration of Eq. (4) determines the 
evolution of angle θi between actual measurements: 
 

( )
( )

, , 1 1, 1 2, 1 3, 1

, 1 , 1 , 1 , 1
, 1 1

, 1

, , ,

sin cos
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i k k

i k
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θ θ ω ω ω

θ θ
θ ψ
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− − − −

− − − −
− −

−

= =

⎡ ⎤−
= + − Δ⎢ ⎥

⎢ ⎥⎣ ⎦

.    (5) 

 
Variable ρi can be calculated once the angular state xk has 

been estimated because it is the distance between P –the 
position of which is determined by angular triangulation– and 
the landmark Li. Variables vL, vT and ψ  are known from the 
odometric measurements ω1, ω2 and ω3 using Eq. (3). 

DYNAMIC ANGULAR STATE ESTIMATOR BASED ON 
KALMAN FILTERING 

Kalman filtering is used to estimate at time step k the state 
vector xk defined in Eq. (1), the dimension of which is the 
number N of landmarks considered. The nonlinear state 
transition function used in the EKF describes how the state xk 
changes with time in response to a control input uk and a noise 
disturbance wk: 
 

( )1 1 1, ,k k k k− − −=x f x u w .           (6) 
 

The ith file (i = 1, ..., N) of this transition function f, 
associated to the evolution of angle θi, is defined in Eq. (5). In 
the process considered, the control input vector uk is calculated 
from the motor encoders at each time step k: 
 

{ }T
1, 2, 3,, ,k k k kω ω ω=u .                      (7) 

 

Noise disturbances in the process model are associated to 
the measures of input variables ωj (j = 1, 2, 3). These noises are 
assumed to be gaussian with zero mean and variance σω

2, 
which has been experimentally determined. The measurement 
model of the EKF relates the state with the external measure zk 
by means of the nonlinear observation function h: 
 

( ),k k k=z h x v ,                    (8) 
 

where vk denotes the measurement noise associated to the laser 
sensor, which also has been experimentally tested and assumed 
to be gaussian with variance σθ

2. Note that external measures zk 
are directly the state of the filter. This fact simplifies the 
required calculations. 

The goal of the state predictor is to produce an estimate of 
the angular state xk at time k, based on the estimation xk-1 at 
time step k-1, the control input uk-1 and the landmark 
observation zk (if any). The algorithm is composed by the 
following steps: prediction, observation, matching and 
estimation. 

Prediction 
The first step of the algorithm uses the state transition 

function –Eq. (6)– to predict the state at time k with the 
knowledge of uk-1: 

 
( )1 1, ,0k k k− −=x f x u .         (9) 

 
Then, the state error covariance associated with this 

prediction is calculated: 
 

T T
1k k k k k k

−
−= +P A P A W QW ,           (10) 

 
where Q is the covariance matrix associated with the noises wk 
in the transition function f, and matrices Ak and Wk are the 
jacobians defined by: 
 

( )1 1, ,0k k k− −

∂
=

∂
fA x u
x

,         (11) 

 

( )1 1, ,0k k k− −

∂
=

∂
fW x u
w

.        (12) 

Observation and matching 
In the following step, an angular measurement arrives and 

the innovation, which is the difference between the measured 
angle and the expected one, is calculated: 
 

( ), , , ,,0i k i k i k i k i kθ θ= − = −z h xυ .               (13) 
 

The innovation covariance can be found by linearizing Eq. 
(8) around the prediction: 
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T T
k k k k k k

−= +S H P H V RV ,               (14) 
 

where R is the covariance matrix associated with the noise vk in 
the laser measurements, and matrices Hk and Vk can be 
calculated by: 
 

( ),0k k
∂

=
∂
hH x
x

,    (15) 

 

( ),0k k
∂

=
∂
hV x
v

.                 (16) 

 
For each observation, a narrow validation gate is used to 

decide whether it is accepted or ignored: 
 

     T 1 2
k k k g− ≤Sυ υ .                    (17) 

 
Therefore, the system is robust to outliers –erroneous laser 

reflections–. If a reflection does not arrive inside the validation 
gate, then the angular odometric prediction continues over one 
more laser revolution.  

Estimation 
In the last step, the successfully matched observations are 

used to update the angular state prediction. The Kalman filter 
gain Kk is calculated to compute the angular state estimation xk, 
and to update the covariance matrix Pk: 

 
T 1

k k k k
− −=K P H S ,                       (18) 

 
k k k k= +x x K υ ,                       (19) 

 
( )k k k k

−= −P I K H P .                     (20) 
 

COMPARISON WITH THE POSE STATE EKF 
In the presented approach to cope with the dynamic robot 

localization, an angular state EKF and triangulation are used to 
obtain an estimation of the robot pose at each time step. This 
method represents an alternative to the well-known pose state 
EKF [6, 7] in which positional odometry and the angular 
measurements are directly fused to get the optimal estimation 
of the robot pose. In this case, the EKF state vector is the robot 
pose –position and orientation– xk = {xk, yk, ψk}T, and the state 
transition function f is based on the positional odometry: 

 

( )
( )

1 , 1 1 , 1 1

1 , 1 1 , 1 1

1 1

cos sin

sin cos
k L k k T k kk

k k k L k k T k k

k k k
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t
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⎪ ⎪ ⎪ ⎪+ Δ⎩ ⎭ ⎪ ⎪⎩ ⎭

x , (21) 

where variables vL, vT and ψ  are known at time step k-1 from 
the odometric measurements ω1, ω2 and ω3 using Eq. (3). The 
control input vector uk is the same as in the angular state EKF   
–see Eq. (7)–, and the noise disturbances in the process model 
are also associated with the measures of input variables ωj.  

The measurement or observation function h of the pose 
state EKF approach relates the robot state –in this case the 
robot pose– with the angular measurement that arrives at time 
step k: 

 

, , arctan i k
i k i k k

i k

X x
Y y

θ ψ
⎛ ⎞−

= = −⎜ ⎟−⎝ ⎠
z ,               (22) 

 
where {Xi, Yi} is the position of landmark Li. Once the 
nonlinear functions f and h are defined, the steps of the 
recursive EKF algorithm are the ones reported in the last 
section. 

It must be noted that there are some differences between 
the presented angular state approach, and the conventional one 
based on the pose state EKF. One of the advantages of the 
presented method is related to the simplicity of the 
measurement equation, as the EKF state is directly measured. 
This fact simplifies the required calculations; for instance, 
matrix Hk is the identity at each time step k. Furthermore, the 
measurement equation is linear, and this implies a reduction of 
the linearization errors which are unavoidable in other 
equations. 

A further difference is concerned with the use of the laser 
measurements to obtain the robot pose. In the pose state EKF, 
each angular measurement corrects the odometric pose 
estimation only in the degree of freedom perpendicular to the 
viewed landmark reflection. By means of the presented 
approach, once the angular state is estimated, the robot pose is 
globally determined using triangulation. 

SIMULATION RESULTS 
To illustrate the accuracy of the presented method, several 

computer simulations have been carried out. A realistic model 
of the robot motion and the sensors used has been created with 
Simulink 6.1 (included in MATLAB R14). By means of this 
model it is possible to check different localization methods 
under the same environmental and sensor noise conditions. 

Three 10 m straight trajectories with the same errors 
associated with the robot encoders and laser sensor measures, 
which have been experimentally modeled, have been simulated 
(trajectories 1, 2 and 3 in Fig. 6). Each trajectory is followed by 
the laser scanner center P at 1 ms-1 inside a 20 x 20 m 
environment with the landmark layout shown in Fig. 6. It must 
be remarked that during all the trajectories the robot orientation 
has remained constant and equal to 0 rad. 

The laser scanner that has been simulated is a real 
instrument from Guidance Control Systems Ltd that rotates at   
8 Hz. It delivers an accuracy of 0.1 mrad, and its maximum 
reflection distance is 30 m. 
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Fig. 6  Simulated robot trajectories and landmark layout in a 

20 x 20 m environment 
 
Tables 1, 2 and 3 show the statistical parameters of the 

lateral error between the actual robot trajectory and the 
calculated one when using three different approaches: The 
presented method –angular state EKF and triangulation–, the 
conventional extended Kalman filter to directly estimate the 
robot pose {x, y, ψ} from laser measurements without 
triangulating [7], and the dynamic triangulation method 
previously presented in [13] –in which the sensor errors were 
not taken into account–. 

 
Table 1  Comparison between the lateral error (elat) 

statistics using different methods (trajectory 1) 
 

Localization method 
RMSE 

elat  
[mm] 

mean  
|elat| 

[mm] 

stand. 
dev. |elat| 

[mm] 

angular state EKF 0.51 0.41 0.30 

pose state EKF 0.68 0.54 0.40 

dynamic triangulation [13] 4.9 3.9 2.9 
 

 
Table 2  Comparison between the lateral error (elat) 

statistics using different methods (trajectory 2) 
 

Localization method 
RMSE 

elat  
[mm] 

mean  
|elat| 

[mm] 

stand. 
dev. |elat| 

[mm] 

angular state EKF 0.60 0.47 0.38 

pose state EKF 2.2 2.0 0.85 

dynamic triangulation [13] 3.5 2.8 2.1 
 

Table 3  Comparison between the lateral error (elat) 
statistics using different methods (trajectory 3) 

 
Localization method 

RMSE 
elat  

[mm] 

mean  
|elat| 

[mm] 

stand. 
dev. |elat| 

[mm] 

angular state EKF 0.53 0.43 0.31 

pose state EKF 0.59 0.46 0.37 

dynamic triangulation [13] 2.2 1.9 1.2 
 
In Tables 1, 2 and 3 the first column indicates the root 

mean square error of the lateral error, while the others indicate 
the mean and the standard deviation of the lateral error absolute 
value respectively.  

It can be noticed that, under the same conditions, the 
proposed method performs the best accuracy for the three 
trajectories. The dynamic triangulation algorithm yields the less 
accurate results because it does not take into account the sensor 
errors. Besides this, the standard deviation of the lateral error 
absolute value is also the lowest for the presented angular state 
EKF, which implies that its results are more reliable.  

 From the results obtained, it can be also observed that the 
accuracy of the presented method does not change significantly 
between different trajectories. Conversely, the error of the 
conventional pose state EKF grows significantly in trajectory 2 
because each angular measurement corrects the odometric pose 
estimation only in the degree of freedom perpendicular to the 
viewed landmark reflection. This makes the pose state EKF 
algorithm more sensible to the landmark distribution around the 
trajectory. As a consequence, it can be concluded that the 
presented method is more appropriate for a general robot 
operation. 

CONCLUSIONS 
In this paper, a method to estimate the angles –relative to 

the robot longitudinal axis– of the straight lines from a laser 
sensor to a set of landmarks has been presented. This method 
uses an extended Kalman filter to estimate at each time an 
angular state vector by fusing the angular odometry –which 
depends on the robot kinematics– and the laser sensor angular 
measurements. By means of this discrete time estimator, 
triangulation can be consistently used at any time to determine 
the robot pose –position and orientation–. 

The positioning accuracy of this method has been tested by 
means of computer simulations using Simulink (in MATLAB). 
For these simulations, a real 3-DOF mobile robot with 
omnidirectional wheels equipped with a laser positioning 
system has been considered. The presented approach has been 
compared to a previous method presented in [13] –in which the 
odometry and laser sensor errors were not taken into account– 
and to the conventional use of the EKF to directly estimate the 
robot pose without applying triangulation. In all the simulated 
trajectories, the presented angular state approach has turned out 
to be the best in terms of localization accuracy. 
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In the future, the method can be improved by using a 
parameter to evaluate in real time the accuracy of the 
positioning measurement. This parameter could help to 
optimise the simultaneous use of more than three landmarks.  

Another future work will consist on the use of the real 
robot prototype SPHERIK-3x3 (Fig. 2), equipped with a laser 
positioning system, odometric sensors and the required 
hardware support, to validate the presented localization 
method. A precise system based on two incremental encoders 
and a linear potentiometer will be used to accurately measure 
the robot actual trajectory. 
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NOMENCLATURE 
 
Ak Jacobian matrix of the partial derivatives of f 

with respect to x 
EKF Extended Kalman filter 
f EKF transition function 
Hk Jacobian matrix of the partial derivatives of h 

with respect to x 
h EKF measurement or observation function 
J Jacobian matrix for the kinematical control of 

the mobile robot 
Kk Kalman filter gain 
Pk State error covariance matrix 
Q Process noise covariance 
R Measurement noise covariance 
Sk Innovation covariance matrix 
uk EKF control input vector 
Vk Jacobian matrix of the partial derivatives of h 

with respect to v 
vL, vT Longitudinal and transversal components of the 

velocity of the laser scanner center P 
vk Measurement noise 
Wk Jacobian matrix of the partial derivatives of f 

with respect to w 
wk Process noise 
Xi, Yi Position of landmark Li 
xk EKF state vector 
x, y, ψ Robot pose 
zk EKF external measurement vector 
θi Angle of the straight line from the laser scanner 

center to the landmark Li relative to the robot 
longitudinal axis 

ρi Distance between the center of the laser scanner 
and the landmark Li 

σω
2, σθ

2 Process noise variance and measurement noise 
variance 

υk EKF innovation 
ω1, ω2, ω3 Angular velocities of the robot motors 
ψ  Angular velocity of the robot 
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