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ABSTRACT 
 
Localization is one of the fundamental problems in mobile 
robot navigation. Several approaches to cope with the 
dynamic positioning problem have been made. Most of 
them use an extended Kalman filter (EKF) to estimate the 
robot configuration –position and orientation– fusing both 
the robot odometry and external measurements. In this 
paper, an EKF is applied to estimate the angles, relative to 
the robot frame, of the straight lines from a rotating laser 
scanner to a set of landmarks. By means of these angles, 
triangulation can be consistently applied at any time to 
determine the robot configuration. The method is robust 
to outliers because an expected value of each landmark 
angle is determined at any time. Simulation and 
experimental results showing the accuracy of this method 
are presented. 

 

1. INTRODUCTION 
 
Mobile robots are increasingly used in flexible 
manufacturing industry and service environments. The 
main advantage of these vehicles is that they can operate 
autonomously in their workspace. To achieve this 
automation, mobile robots must include a localization –or 
positioning– system in order to estimate the robot 
configuration –position and orientation– as accurately as 
possible [1]. In the past two decades, a number of 
different approaches have been proposed to solve the 
localization problem. These can be classified into two 
groups [2]: relative and absolute localization methods.  

In relative localization, dead reckoning methods  
–odometry and inertial navigation– are used to calculate 
the robot position and orientation from a known initial 
configuration. Odometry is a widely used localization 
method because of its low cost, high updating rate, and 

reasonable short path accuracy. However, its unbounded 
growth of time integration errors with the distance 
travelled by the robot is unavoidable and represents a 
significant inconvenience [3]. Several approaches have 
been done to cope with the odometry error propagation 
[4], [5]. 

Conversely, absolute localization methods estimate 
the robot position and orientation by detecting distinct 
features of a known environment. Most of the work 
published integrates a prediction phase, based on the 
odometric data and the robot kinematics, and a correction 
–or estimation– phase that takes into account external 
measurements. The most used methods are based on 
Kalman filtering [6], [7], [8] and Bayesian localization 
[9], [10]. Bayesian localization methods are robust to 
complex, dynamic and badly mapped environments, but 
are in general less accurate. Finally, other authors deal 
with absolute localization using bounded-error state 
estimation applying interval analysis such in [11].  

In this paper, an extended Kalman filter (EKF) is 
used to estimate in real time the angles –relative to the 
robot frame– of the straight lines from the sensor (a 
rotating laser scanner in this case) to the landmarks. Then, 
by means of triangulation, which refers to any process 
which solves a system of simultaneous algebraic or 
transcendental equations –whether or not they are 
reducible to an equivalent problem involving triangles– 
[12], the robot localization can be consistently determined 
at any time.  

In mobile robotics, triangulation occurs often in the 
context of artificial landmarks. However, any natural 
aspects of the environment –such as walls or corners– 
whose positions are known, and are detected by a sensor 
whose indications depend on their position relative to the 
sensor, establish a triangulation context. This approach is 
an extension of the method presented in [13], in which the 
odometry and laser sensor errors were not taken into 
account. 



In section 2, the triangulation methods for mobile 
robot localization and their properties are described. Next, 
vehicle kinematics and the expressions for the angular 
state odometry are reported to introduce the dynamic state 
estimator, which is presented in section 4. In sections 5 
and 6, computer simulations and experimental results 
showing the positioning accuracy of the presented 
method, compared to other existing localization 
approaches, are reported. 
 

2. TRIANGULATION BASED MOBILE ROBOT 
LOCALIZATION 

 
By means of triangulation it is possible to determine the 
robot position and orientation from the landmarks position 
and the measured angles θ1, θ2 and θ3 –relative to the 
robot longitudinal axis– for three of them (Fig. 1) [14], 
[15]. As the accuracy of triangulation algorithms depends 
upon the point of observation and the landmark 
arrangements [14], more than three landmarks can also be 
used to improve the positioning accuracy [16], [17]. 

In this paper, a laser positioning system has been 
considered. The main advantage of this system in 
industrial applications is its high positioning accuracy 
inside the workspace which is required in certain practical 
situations such as loading, unloading or narrow crossings. 
This system consists of a rotating laser scanner and a 
group of catadioptric landmarks strategically placed.  

The laser scanner emits a rotating beam that 
horizontally sweeps the environment and reflects back 
when it detects a landmark Li. The system measures the 
angle θi of the reflected beam, relative to the vehicle 
longitudinal axis (Fig. 1), by means of an incremental 
encoder. 

For the consistent use of triangulation, the angles θi to 
each landmark must be known at the same mobile robot 
configuration –position and orientation–. This condition, 
which is obviously fulfilled under static condition, is not 
valid under dynamic condition –robot in motion– and 
therefore triangulation cannot be directly applied because 
landmarks are detected at different positions and even 
different orientations of the robot [18]. 

To solve this problem several authors use recursive 
algorithms to fuse the robot odometric information and 
the laser external measurements in order to keep track of 
the robot configuration. In [7] a Kalman filtering 
framework is used to fuse this data. Other approaches are 
based on alternative recursive algorithms that deal with 
nongaussian noise and deterministic errors [19]. 
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Fig. 1. Mobile robot position and orientation can be calculated 
from landmarks position and angles θ1, θ2, θ3 by triangulation. 

 
In this paper, to cope with dynamic positioning, an 

extended Kalman filter –which takes into account the 
errors associated to odometry and the laser scanner– is 
used to estimate the relative angles θi(t). Between actual 
laser measurements angles are predicted by means of the 
time integration of its time derivative, which depends 
upon the robot kinematics [13]. Thus, a kind of “angular 
odometry” substitutes the usual odometry related to the 
robot pose, and allows the kinematically consistent use of 
triangulation. The angular state vector used in the EKF is: 

 

{ }T
1, 2, ,, ,...,k k k N kθ θ θ=x ,                    (1) 

 
instead of the conventional one xk = {xk, yk, ψk}T, which is 
obtained from vector (1) by means of triangulation. In (1) 
N represents the number of viewed landmarks, in this case 
N = 3. 

An additional advantage of the angular odometry 
developed is that, as it gives an accurate real-time 
estimation of each angle θi, it allows setting a narrow 
validation gate for each landmark reflection. Angular 
measurements that do not fall in this validation gate are 
ignored. If a reflection does not arrive inside the 
validation gate the angular odometric prediction continues 
over one more laser revolution. Therefore, the system is 
robust to possible outliers detected by the laser sensor. 

 
3. VEHICLE KINEMATICS AND ANGULAR 

ODOMETRY 
 
3.1. Vehicle kinematics 
 
The vehicle studied in this approach is a forklift type 
mobile robot with a tricycle kinematics. Its main 
geometric parameters are shown in Fig. 2. The vehicle has



two coaxial wheels located in the fork, the driving and 
steering wheel, and a castor wheel. 

The velocity v(P) of the point P –center of the laser 
scanner– can be calculated from the velocity v of the 
center of the driving-steering wheel and its steering angle 
γ (Fig. 2). Using axes 1-2, v(P) is expressed as: 
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geometric variables p, L and Lp are defined in Fig. 2. The 
orientation angle ψ of the robot evolves according to: 
 

sinv
L

ψ γ= .                   (3) 

 
The velocity v and the steering angle γ are known at 

each time from the driving and steering encoders on the 
robot. 

 
3.2. Angular odometry 
 
The solution presented to cope with triangulation under 
dynamic condition is based on the odometric calculation 
of the evolution of the angle –relative to the vehicle– of 
the straight lines from the laser scanner (point P) to each 
landmark Li.  

If ρi stands for the distance between point P and the 
landmark Li, and θi is the angle between the robot 
longitudinal axis and the straight line from P to this 
landmark (Fig. 2), the time evolution of θi can be 
expressed, according to the vehicle kinematics, as: 
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Discrete time integration of equation (4) determines 

the evolution of angle θi between measurements: 
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Variable ρi can be calculated after estimating the 

angular state xk because it is the distance between P, the 
position of which is determined by angular triangulation, 
and the landmark Li. 
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Fig. 2. Geometric and kinematical parameters of the robot.  

Axes 1 and 2 are body axes. 
 

4. DYNAMIC ANGULAR STATE ESTIMATOR 
BASED ON KALMAN FILTERING 

 
Kalman filtering is used to estimate at time step k the state 
vector xk defined in (1), the dimension of which is the 
number N of landmarks considered. The nonlinear state 
transition function used in the EKF describes how the 
state xk changes with time in response to a control input uk 
and a noise disturbance wk: 
 

( )1 1 1, ,k k k k− − −=x f x u w .        (6) 
 

The ith file (i = 1, ..., N) of this transition function f, 
associated to the evolution of angle θi, is defined in (5). In 
the process considered, the control input vector uk is 
calculated by the driving and steering encoders at each 
time step k: 
 

{ }T,k k kv γ=u .                          (7) 
 

Noise disturbances in the process model are 
associated to the measures of input variables vk and γk. 
These noises are assumed to be gaussian with zero mean 
and variances σv

2 and σγ
2 respectively, which have been 

experimentally determined. The measurement model of 
the EKF relates the state with the external measure zk by 
means of the nonlinear observation function h: 
 

( ),k k vθ=z h x ,                (8) 
 
where vθ ~ N(0, σθ

2) denotes the measurement noise 
associated to the laser sensor, which also has been 
experimentally tested. Note that external measures zk are 
directly the state of the filter. This fact simplifies the 
required calculations. 



The goal of the state predictor is to produce an 
estimate of the angular state xk at time k, based on the 
estimation xk-1 at time step k-1, the control input uk-1 and 
the landmark observation zk (if any). The algorithm 
employs the following steps: prediction, observation, 
matching and estimation. 
 
4.1. Prediction 
 
The first step of the algorithm uses the state transition 
function (6) to predict the state at time k with the 
knowledge of uk-1: 

 
( )1 1, ,0k k k− −=x f x u .     (9) 

 
Then, the state error covariance associated with this 

prediction is calculated: 
 

T T
1k k k k k k

−
−= +P A P A W QW ,       (10) 

 
where Q is the covariance matrix associated with the 
noises wk in the transition function f, and matrices Ak and 
Wk are the jacobians defined by: 
 

( ), ,0k k k
∂

=
∂
fA x u
x

, ( ), ,0k k k
∂

=
∂
fW x u
w

.  (11) 

 
4.2. Observation and matching 
 
In the following step, an angular measurement arrives and 
the innovation, which is the difference between the 
expected angle and the measured one is calculated: 
 

( ), , ,, 0k i k i k i k i kν θ θ= − = −z h x .          (12) 
 

The innovation covariance can be found by 
linearizing (8) around the prediction: 
 

T T
k k k k k k

−= +S H P H V RV ,          (13) 
 

where R is the covariance matrix associated with the noise 
vθ in the laser measurements, and matrices Hk and Vk can 
be calculated by: 
 

( ),0k k
∂

=
∂
hH x
x

, ( ),0k kvθ

∂
=
∂
hV x .           (14) 

 
For each observation, a validation gate is used to 

decide whether it is accepted or ignored: 
 

     T 2
k k k gν ν ≤S .                (15) 

4.3. Estimation 
 
In the last step, the successfully matched observations are 
used to update the angular state prediction. The Kalman 
filter gain Kk is calculated to compute the angular state 
estimation xk, and to update the covariance matrix Pk: 
 

T 1
k k k k

− −=K P H S ,                   (16) 

k k k kν= +x x K ,                   (17) 

( )k k k k
−= −P I K H P .                 (18) 

 
5. COMPUTER SIMULATIONS 

 
To illustrate the accuracy of the presented method, several 
computer simulations have been carried out. A realistic 
model of the robot motion and the sensors used has been 
created with Simulink 6.1 (included in MATLAB R14). 
By means of this model it is possible to check different 
localization methods under the same environmental and 
sensor noise conditions. 

Two identical trajectories with the same errors 
associated to the encoders and laser sensor measures  
–which have been experimentally modeled– have been 
performed. The difference between the two simulated 
trajectories is concerned with the environment, in the first 
case the robot navigates through a 10 x 6 m room, while 
in the second the dimensions of the workspace are  
20 x 12 m. The landmark layout in both cases is the same, 
and the center of the driving-steering wheel follows a  
10.3 m trajectory –composed of half a circumference and 
a straight line– at 0.5 ms-1, Fig. 3. 

The simulated laser scanner is a real model from 
Guidance Control Systems Ltd that rotates at 8 Hz and 
delivers an accuracy of 0.1 mrad. Its maximum reflection 
distance is 30 m. 
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Fig. 3. Simulated trajectories and landmark layout in:  

a) 10 x 6 m environment, and b) 20 x 12 m environment. 



Tables 1 and 2 show statistical parameters of the 
lateral error between the actual robot trajectory and the 
calculated one when using three different approaches: The 
presented method –angular state EKF and triangulation–, 
the conventional extended Kalman filter to directly 
estimate the robot configuration {x, y, ψ} from laser 
measurements without triangulation [7], and the dynamic 
triangulation method previously presented in [13] –in 
which the sensor errors were not taken into account–. 

 
Table 1. Comparison between the lateral error (elat) statistics 

using different methods (10 x 6 m environment) 

 
Localization method 

RMSE 
elat  

[mm] 

mean  
|elat| 

[mm] 

stand. 
dev. |elat| 

[mm] 

angular state EKF 0.59 0.54 0.23 

EKF xk = {xk, yk, ψk}T 0.91 0.86 0.29 

dynamic triangulation [13] 2.1 1.5 1.4 
 

Table 2. Comparison between the lateral error (elat) statistics 
using different methods (20 x 12 m environment) 

 
Localization method 

RMSE 
elat  

[mm] 

mean  
|elat| 

[mm] 

stand. 
dev. |elat| 

[mm] 

angular state EKF 1.3 1.2 0.51 

EKF xk = {xk, yk, ψk}T 2.2 2.1 0.68 

dynamic triangulation [13] 2.8 2.3 1.7 
 

In Tables 1 and 2 the first column indicates the root 
mean square error of the lateral error, while the others 
indicate the mean and the standard deviation of the lateral 
error absolute value respectively. It can be noticed that, 
under the same conditions, the proposed method performs 
the best accuracy. Besides this, the standard deviation of 
the lateral error absolute value is also the lowest, which 
implies that the results achieved by means of the 
presented angular state EKF are more reliable.  

Another conclusion reached from the results 
obtained, is that the ratio between the error of the 
presented angular state EKF and the error of the usual 
pose state EKF is somewhat smaller when the landmarks 
are at longer distances. This may be associated with the 
greater triangulation accuracy near the center of the 
circumference that contains the three landmarks used. 

 
6. EXPERIMENTAL RESULTS 

 
The method has also been tested on a real forklift mobile 
robot for industrial applications (Fig. 4a). The robot is 
provided with the laser scanner described in section 5, and 
the driving and steering encoders to determine the needed 
variables v and γ.  
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Fig. 4. a) Industrial forklift mobile robot used. b) CAD map of 
the laboratory environment and robot trajectory performed. 

 
The hardware used to support the method is an 

industrial PC (PC104 based) Pentium III Celeron clocked 
at 400 MHz smartcore. This PC runs with a real-time 
operative system RT-Linux 3.2. For the odometric and 
laser signals capture, specific firmware implemented by 
FPGA is applied. 

The robot navigates through the laboratory shown in 
Fig. 4b, and the same three landmarks (positioned with 
sub-millimeter accuracy) have been used for all the 
configurations of the vehicle. In the experiments the robot 
has been manually guided with a velocity of the driving 
wheel center in the range of 0.14 – 0.18 ms-1.  

To validate the accuracy of the presented method, 
some points of the actual robot trajectory have been 
measured using a photometric method based on a high 
resolution camera [13]. The lateral error elat between the 
calculated and the actual points is taken as a measure of 
the accuracy, and the three methods considered in section 
5 are compared under realistic laboratory conditions. 
Table 3 illustrates the accuracy obtained by means of 
these methods.  

 
Table 3. Comparison between the lateral error (elat) statistics 

using different methods (experimental validation) 

 
Localization method 

RMSE 
elat  

[mm] 

mean  
|elat| 

[mm] 

stand. 
dev. |elat| 

[mm] 

angular state EKF 3.8 3.0 2.4 

EKF xk = {xk, yk, ψk}T 6.1 5.4 2.8 

dynamic triangulation [13] 6.4 5.0 4.2 
 

It can be seen that the presented angular state Kalman 
filter reduces the average of the lateral error absolute 
value from 5 mm –achieved by means of the method 
presented in [13]– to 3 mm, which represents a lateral 
error reduction of 40%. Compared to the pose state EKF, 
the presented method yields better results also in terms of 



positioning accuracy. During the experimental validation, 
a maximum lateral error of 9.3 mm –between the actual 
and the calculated points– has been obtained when using 
the presented method. 
 

7. CONCLUSIONS 
 

In this paper, a method to estimate the angles –relative to 
the robot longitudinal axis– of the straight lines from a 
laser sensor to a set of landmarks has been presented. This 
method uses an extended Kalman filter to estimate at each 
time an angular state vector by fusing the angular 
odometry –which depends on the robot kinematics– and 
the laser sensor angular measurements. By means of this 
discrete time estimator, triangulation can be consistently 
used at any time to determine the robot configuration  
–position and orientation–. 

The positioning accuracy of this method has been 
tested by means of computer simulations and by means of 
experiments using a real forklift prototype –equipped with 
a laser positioning system, odometric sensors and the 
required hardware support– navigating through a 
laboratory environment. The presented approach has been 
compared to a previous method presented in [13] –in 
which the odometry and laser sensor errors were not taken 
into account– and to the conventional use of the EKF to 
directly estimate the robot pose without applying 
triangulation. In both, computer simulations and real 
experiments, the presented approach has turned out to be 
the best in terms of localization accuracy. 

In the future, the method can be improved by using a 
parameter to evaluate in real time the accuracy of the 
positioning measurement. This parameter could help to 
optimise the simultaneous use of more than three 
landmarks.  

Another future line of research is the extension of the 
presented positioning method to vehicles with kinematics 
different from that of the tricycle, in particular vehicles 
with omnidirectional wheels. 
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