Design of an active stance-control knee-ankle-foot orthosis to assist the gait of incomplete spinal cord-injured subjects

J.M. Font-Llagunes¹, R. Pàmies-Vilà¹, F. Romero², J. Alonso², U. Lugrís³, J. Cuadrado³ O

3. Laboratory of Mechanical Engineering, Universidad de La Coruña (UDC), Spain

E-mail: josep.m.font@upc.edu

Introduction

- National project: Application of multibody dynamics techniques to active orthosis design for gait assistance (UDC, UEX, UPC).
- Project goals:
 - Simulation of the gait of spinal cord injured (SCI) subjects equipped with active orthoses.
 - Design of an active orthosis for incomplete SCI subjects.

- The project involves different tasks:
 - Preparation of the experimental equipment.
 - Development of computational models for healthy and incomplete SCI subjects.
 - Design and control of an active orthosis prototype.
 - Inverse/forward dynamic analysis of assisted gait.

Active orthosis prototype

- Stance-Control Knee-Ankle-Foot Orthosis (SCKAFO) aimed at assisting SCI subjects with levels C or D in the ASIA scale.
- Subjects are able to control hip flexors, but have partially denervated muscles actuating the knee and ankle joints.

Different orthosis prototypes for the right and left legs:

CAD model

Left prototype

Experimental equipment

- **Biomechanics Laboratory**:
 - 12 OptiTrack FLEX:V100R2 cameras.

Passive reflective markers

2 AMTI AccuGait force plates.

- Instrumented crutches:
 - Motion capture: 3 markers/crutch.
 - Force measurement: extensometry.
 - Calibration using force plates.
 - Synchronized with motion capture system and force plates.

Computational model

- Healthy subject model: 37 markers.
 - 18 bodies, 17 spherical joints.
 - 57 degrees of freedom.
 - 228 coordinates (natural + angular).
 - Two segments for each foot.
 - No HAT simplification.
 - BSP: anthropometric data and correlation equations.
- SCI subject model:
 - Crutches rigidly connected to hands.
 - 252 total coordinates.
 - Up to 4 simultaneous contacts: Indeterminacy problem.
 - Standard values of BSP are not applicable: use of densitometry.

Conclusions and future work

- We have developed a computational-experimental tool that allows to obtain kinematic and dynamic information of the gait of SCI subjects using crutches and active orthoses.
- Two innovative knee-ankle-foot active orthoses have been built and tested on healthy subjects.
- The inverse dynamic analysis of orthosis-assisted gait can be performed using the presented tools.
- Future work:
 - Try the presented prototypes on SCI subjects in a hospital environment.
 - Use the computational tool to test different control strategies.
 - Investigate the subject-orthosis force sharing problem.
 - Understand the subject's motor adaptation to robotic assistance.