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Abstract 

Mechanical systems with time-varying topology appear frequently in natural or human-made artificial systems. 
The nature of topology transitions is a key characteristic in the functioning of such systems. In this paper, a 
concept to decouple kinematic and kinetic quantities at the time of topology transition is used. This approach is 
based on the use of impulsive bilateral constraints (inert constraints) and it is a useful and elegant method for 
the analysis of energy redistribution and velocity change when these constraints are suddenly established. Two 
examples of variable topology mechanical systems are analyzed: a bipedal walking system and a dual-
pantograph robotic prototype making contact with a stiff environment. For the first example, numerical 
simulations are presented to discuss the effects of configuration and design parameters on the dynamics and 
energetics of heel strike. For the second example, detailed experimental analysis is carried out to illustrate 
different concepts introduced in this work. 

 

INTRODUCTION 

Variable topology mechanical systems are present in various fields of application, e.g., robotics, biomechanics 
and mechanism science. The dynamic analysis of such systems depends on the time-varying nature of the 
constraints established between the elements of the multibody system and the environment. This fact complicates 
the analysis because in most cases a different dynamic model must be developed for each constraint 
configuration. Furthermore, constraints are usually established due to impacts which also require a different 
dynamics formulation to be characterized. Typical situations that occur in variable topology systems are: 

(1)  The number of degrees of freedom of the system decreases via the development of certain connections. An 
example for this can be the grasping/capturing of a moving payload, which may also represent the 
interaction of two robotic mechanisms, or a human and a payload. The effect of mass capture on flexible 
multibody systems was studied in [1]. This group of problems includes two possibilities: the developed 
connections can exist for a finite period of time or they can represent an instantaneous situation only. 

(2)  The constraint configuration is changing: some constraints are added and some become passive at the same 
time. In this case, the effective number of degrees of freedom may stay the same. An example for this 
situation can be found in the analysis of (active/passive) dynamic walking machines [2]. In those systems, 
the heel strike event represents a sudden change of topology where some constraints are imposed on the 
foot that makes contact, and other are released from the foot that leaves the ground [3, 4, 5]. 

Discontinuous constraints have been a known concept in analytical mechanics [6, 7]. Two particular cases of 
such discontinuous constraint configurations can be the sudden removal and the sudden addition of constraints. 
The sudden removal of constraints alone does not instantaneously change the energy and momentum distribution 
of the system unless other impulsive forces are exerted during the transition. The sudden addition of constraints 
does cause instantaneous changes. Therefore, the truly critical event during the motion of variable topology 
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systems is when physical connections are established. Such an event can be characterized by inert constraints, 
which are a class of bilateral impulsive constraints [6, 7]. 

This work focuses on this event and particularly on the effects of the system state (configuration and velocities) 
on various dynamic aspects of the transition. The dynamic analysis conducted in this work is based on an 
analytical approach that allows a complete decomposition of the dynamic equations and the kinetic energy to 
two subspaces of the tangent configuration space of the system, i.e., the spaces of constrained and admissible 
motions [8]. It will be shown that this approach is well-suited to better characterize topology transitions and get 
insight into the dynamic behavior of these systems during contact. 

Two situations that can be characterized by means of inert constraints are studied in this paper. We focus first on 
the heel strike event of bipedal locomotion. This is a relevant event because it represents the main cause of 
energy consumption during the gait cycle [5]. Furthermore, it plays an important role to guarantee the cyclic 
stability of the motion. Human walking is not locally stable, but it is cyclically stabilized by the removal of 
energy that takes place at each heel strike. Different dynamic aspects of the heel strike are analyzed in this work, 
paying special attention on the energy redistribution at topology transition. The magnitude of the contact 
impulses developed on the foot are also calculated for different configurations and design parameters of a simple 
bipedal system: a compass-gait walker with circular feet and a torso. 

The second example studied in the paper is the case of a robotic multibody mechanical system that makes 
contact with a stiff environment. An experimental testbed consisting of two dual-pantograph devices is used for 
that purpose. By means of it, detailed experimental analysis is carried out to illustrate different concepts 
introduced in this work.  

DYNAMICS FORMULATION AND DECOMPOSITION 

Let us consider that it  represents a typical time for the change of topology where certain constraint conditions 
are suddenly imposed. This event takes place in the [ , ]i it t   interval where it

  and it
  represent the pre- and 

post-event instants, respectively. The duration of this interval can usually be considered very short on the 
characteristic time scale of the finite motion of the system. Therefore, in [ , ]i it t   the configuration of the system 
is assumed to be constant. The event of topology change is characterized by m impulsive constraints, which can 
normally be written as 

  Av 0 , (1) 

where v  represents the 1n  array of generalized velocities at the post-event instant it
 , and A  is the m n  

constraint Jacobian matrix. These constraints represent the required topology at it
  at the velocity level and they 

are also known as inert constraints [6, 7]. The general case where these constraints are realized either in an ideal 
or a non-ideal way is considered in this work. 

These above impulsive constraints capture the physical conditions due to a sudden change in topology. A general 
approach can be developed based on them to characterize several aspects of the behavior of mechanical systems 
with varying topology. A key principle, we will also use here, is the principle of the relaxation of constraints that 
will allow us to turn the bilateral constraint conditions of Eq. (1) into the more general form of a mapping in the 
tangent space of the dynamic system [8]. This mapping will make it possible to interpret a decomposition in the 
tangent space. 

The tangent space of the mechanical system can be seen as an n dimensional linear space that is interpreted for 
each configuration [9]. Since the configuration of the system is assumed to be constant during the topology 
change interval, a single representation of this linear space can be used. Via the relaxation of the impulsive 
constraints we obtain a mapping that can be interpreted for the two representative time instants as c

 Av u  and 

c
 Av u . This mapping defines a subspace of the tangent space, the space of constrained motion (SCM). The 

subspace that complements the SCM to the whole tangent space is the space of admissible motion (SAM) [8]. 
The dynamics associated with the topology change primarily takes place in the SCM. Array cu  contains 
velocities along the m representative directions of the SCM. Motion along these directions is constrained by the 
topology change, and c

 u 0  according to Eq. (1). Array cu  may also be seen to give a local parameterization 
for the SCM [8]. 

The above two subspaces can be defined so that they are orthogonal to each other with respect to the natural, 
mass metric of the tangent space [8]. In that case, any impulsive event characterized by ideal impulsive 
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constraints of the form of Eq. (1) will influence quantities in the SCM, and will leave the SAM unaffected. 
However, non-ideal effects, like friction, can couple the two subspaces and develop an influence on the 
admissible motion dynamics too. The decomposition to the two subspaces can be accomplished via asymmetric 
projection operators. For the case when the constraints are linearly independent, i.e., the constraint Jacobian has 
a full row rank, the mentioned projection matrices can be obtained as [8] 

   11 1T T
c

 P M A AM A A , (2) 

   11 1T T
a

  P I M A AM A A , (3) 

where I  is the n n  identity matrix, M  is the mass matrix of the system, and cP  and aP  are the mentioned 
projection operators. These are used to project kinematic quantities to the SCM and SAM, respectively, and their 
transposes project kinetic quantities [8]. It can be proved that the projectors above are orthogonal with respect to 
the mass matrix, i.e., T T

c a a c P MP P MP 0 . 

By means of the decomposition presented above, the kinetic energy of the system,  1 2 TT  v Mv , can be 
completely decoupled in two terms cT  and aT  associated with the SCM and the SAM, respectively. This kinetic 
energy decomposition can be represented as 

 
1 1

2 2
T T

c a c c a aT = T +T  v Mv v Mv , (4) 

where c cv P v  and a av P v .  

Any force or impulse arising in the SCM will change only cT  leaving aT  unaffected. Also, any change of the 
generalized velocities that influences cv  or av  only, will cause a change in cT  or aT , respectively, while 
leaving the other unchanged. The impulsive event, with the assumption of ideal constraint realization, gives rise 
to generalized forces and impulses which will influence cT only. In this case, cT  will be completely lost in the 
topology transition, 0+

cT  , and the total post-event kinetic energy will equal the pre-event kinetic energy of the 
SAM, +

aT T  .  

The impulsive dynamic equations can be represented in the decoupled form as 

    
+

+ Tc
c c

c

T
= 



 
    

M v v A
v

  , (5) 

which gives the impulse-momentum level dynamic equations for the SCM, and 

  
+

+ Ta
a a a N

a

T
= 



 
   

M v v P f
v

, (6) 

represents the dynamics of impulsive motion for the SAM. In Eqs. (5) and (6),   and   represent the impulses 
of the generalized constraint and non-ideal forces associated with the local parameterization, cu , of the SCM. 
The impulses of the generalized non-ideal forces can usually be expressed with force laws such as 

 , ,N Nf f v q  (e.g., friction). They can then be projected to the subspaces and included in the above 
impulsive dynamic equations as T

c NP f  and T
a NP f , respectively. For the SCM the associated generalized impulse 

component can be expressed as T T
c N P f A  . In the case of ideal constraint realization, only   is present in the 

above equations ( N f 0 ). However, in general, the magnitudes of the elements of   are different for ideal and 
non-ideal realizations [8]. 

The detailed analysis of the formulation outlined can provide important tools to analyze and design variable 
topology systems and gain deeper insight into their behavior. We can develop a thorough understanding and 
description on the energy redistribution and momentum transfer at topology change. In turn, this makes it 
possible to gain insight, develop performance measures, and guidelines for the design of variable topology 
mechanical systems and their control. It is noteworthy that the approach described does not require the 
assumption of idealistic topology transitions. Effects of non-ideal phenomena (such as friction) can be 
considered. 
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APPLICATION EXAMPLES 

We will use numerical and experimental results obtained for two variable topology systems to illustrate the 
usefulness of the previous approach. The first is the model of a compass-gait biped with torso, Fig. (1a). This 
system changes its topology at each heel strike, which can be realistically modeled with ideal impulsive 
constraints. Based on the proposed formulation, we study the effects of various design parameters on the 
dynamics of the topology change and illustrate the capabilities of the approach. 

The second example includes an experimental multibody system, Fig. (1b). The passive device emulates a stiff 
environment with a flat surface and the active device comes to a contact interaction with the passive one. This is 
the case of a general impact situation where the topology change lasts only for a very short period of time. The 
compression phase associated with this interaction represents a topology transition and can be modeled with 
impulsive constraints. Non-ideal phenomena, such as friction, are also present in this case and cannot be 
neglected in general. We will use the data obtained via performing several sets of experiments for different pre-
impact conditions. Based on this, we will illustrate how the proposed decomposition approach can be used to 
represent the intensity of topology transitions and provide dynamics performance characterization. 

 

 
 

(a) (b) 

Fig. 1. Application examples: (a) Compass-gait biped with torso, (b) Experimental setup with two Quanser dual-
pantograph devices. 

 

Example 1: Numerical analysis of heel strike dynamics of a compass-gait biped with torso 

In bipedal locomotion, the constraint configuration imposes that the swing foot stays in contact with the ground 
without slipping after heel strike, i.e., the velocity of the contact point becomes zero after impact. This is the 
desired situation in walking motion, which can be expressed by bilateral impulsive constraints of the form of  
Eq. (1) [10]. After heel strike, the swing foot changes its role and becomes the stance foot of the next step. We 
assume that non-ideal effects are not present in this situation. 

We will analyze the heel strike event of a compass walker with circular feet and torso, Fig. (1a). It consists of 
two identical legs of length l and mass m. The center of mass (COM) of each leg is at a distance b from the hip. 
The radius of the feet is R and the hip is modeled as a point mass Hm  located at the revolute joint between the 
legs. The torso is included as a third link that can rotate about the hip with mass Tm  and the center of mass 
located at a distance Tl  from the hip. The value of the fixed parameters is given in Table (1). 

We define two dimensionless parameters which will be varied to investigate its dynamic effects. These are 
= R l , which establishes a relationship between the foot radius and the length of the leg, and 2T= m m , 

which accounts for the mass distribution between upper and lower body. 
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Table 1. Dynamic parameters of the bipedal walking system. 

Parameter Value Description 

Wm  30 kg Total mass of the walking system 

Hm  10 kg Mass of the hip 

l  0.8 m Length of the leg ( )l a b   

b  0.4 m Position of the COM of the leg 

Tl  0.4 m Position of the COM of the torso 

 

The configuration of the compass walker can be described by the 5 generalized coordinates iq  ( 1,...,5i  ) 
shown in Fig. (1a). The time derivatives of these coordinates define the vector of generalized velocities v . For 
the system at hand, we obtained the mass matrix M  and the Jacobian A  associated with the constraints 
established at heel strike. As mentioned before, these constraints establish that the velocity of the contact point 
goes to zero at heel strike. 

The dynamic analysis of topology change is based on the pre-impact velocities v . To obtain this vector the 
following assumptions were made for the pre-impact kinematics:  

(1)  The stance foot rolls over the ground without slipping, 1 3q Rq    and 2 0q  . 

(2)  The upper body does not rotate with respect to the absolute inertial frame, 5 0q  . 

(3)  Both legs rotate with an angular velocity of 1 rad/s with respect to the absolute inertial frame,  

3 4 1q q     rad/s. These are typical values for compass-gait walkers [11].  

Based on those, we obtained the pre-impact kinetic energy decomposition and the impulses developed on the 
contact point [ , ]Tt n   , Fig. (1a), for different configurations and designs. 

We analyze first the influence of the foot radius R and the angle   between the legs on the dynamics of heel 
strike. Note that angle 32q   at heel strike. We consider the following interval of possible angles: 

[10º ,60º ]  . As for the configuration of the upper body, we assume that it is placed perpendicular to the 
ground at impact. The effect of the foot radius design is analyzed considering the following values of  : 0, 0.25, 
and 0.5. The parameter representing the mass distribution is 1  . 

Fig. (2) shows the kinetic energy decomposition just before heel strike and the magnitude of impulses developed 
as functions of   for the considered values of  . The pre-event energy decomposition is useful because it 
indicates the energy which will be lost during topology change ( cT  ) and the energy that will remain in the 
system after the transition ( a aT T  ). 

 

  

Fig. 2. Kinetic energy decomposition and impulses at contact point as functions of   and  . 
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Several conclusions can be drawn based on the results shown in Fig. (2). First, it can be seen that the larger the 
foot radius is, the lower the energetic losses are at heel strike. Also, for a given foot radius, a low inter-leg angle 
  provides lower energetic losses. It can be also seen that a point-feet walker ( 0  ) is clearly less efficient 
than a circular-feet walker ( 0  ), which is in complete agreement with [12]. The curve for 0   does not 
cover all the range of angles because for 43º   the stance foot does not lift up from the ground after heel strike 
and, therefore, forward motion is not obtained. 

Regarding the impulses n  (normal direction) and t  (tangential direction), Fig. (2) shows that both of them 
grow with   and decrease with  . The point-feet walker is the one that yields higher impulses for a given angle 
(in both directions). It can be shown that high contact impulses are obtained when cT   is also high. 

Secondly, we analyze how the torso orientation and the walker mass distribution affect the dynamics of heel 
strike. For this purpose, we study impacts for a usual inter-leg angle 40º  , and a fixed foot radius 0,25R l  
(i.e., 0, 25  ). The influence of the configuration of the torso is analyzed by varying angle 5q  within the range 
[ 20º , 20º ]  . That is, configurations between upper body leaning backward aligned with the front leg 
( 5 20ºq   ) and upper body leaning forward aligned with the rear leg ( 5 20ºq   ). As for the mass distribution, 
its effects are studied by considering the following values of  : 0.1, 1, and 10. 

Fig. (3) represents the kinetic energy decomposition and the magnitude of the developed impulses as functions of 

5q  for the considered values of the mass distribution ratio  . Based on the obtained results, it can be seen that a 
body posture with the torso leaning forward is better to minimize energetic losses (lower cT  ). Such an angle 
also increases aT  , which is the energy that will stay in the system after topology transition. The mass 
distribution of the walker (parameterized with  ) has different consequences depending on the torso angle. It 
can be seen that for negative 5q  a low value of   is better to reduce energy losses, whereas for positive 5q  a 
high value of   works better in terms of energetic efficiency. 

According to the results, a good guideline to obtain less consuming heel strike transitions in humanoid robotics 
would be to place the torso slightly leaning forward. It is worth noting that this conclusion is also supported by 
[13], in which the complete gait of a compass-gait walker with upper body was optimized. The obtained optimal 
joint-angle evolution shows an upper body configuration inclined forward aligned with the non-colliding leg at 
the end of the gait (heel strike). From the results obtained, it can also be concluded that it is advisable to design 
robots with the mass more concentrated in the torso than in the legs ( 1  ). As before, it can be shown that the 
magnitude of the contact impulses is correlated with cT  . Therefore, the last considerations given to reduce 
energy losses also hold if we want to obtain lower contact impulses. 

 

  

Fig. 3. Kinetic energy decomposition and impulses at contact point as functions of 5q  and  . 

 

Example 2: Experimental analysis of contact interaction between two robotic systems 

An experimental testbed based on two dual-pantograph devices has been used to investigate the presented 
concepts. The real system is shown in Fig. (1b). Each device is equipped with high-resolution force/torque 
sensors at the tip and optical encoders at the motor joints. In the experiments one of these devices (passive 
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device) emulates a stiff environment with a flat surface and the other (active device) comes to a contact 
interaction with the passive one at one single contact point. The compression phase of this interaction represents 
a topology transition that can be modeled with impulsive constraints of the form of Eq. (1). 

The trajectories performed have been programmed so that the motion of the system can be considered planar. 
The planes of the two pantographs are parallel so they can be considered with one single “composite” 
pantograph model, see Fig. (4a). In this figure, angles iq  denote the absolute orientation of the ith link 
(i=1,2,3,4) of the pantograph. Regarding the parameters, il  and ia  represent the length and the position of the 
center of mass of the ith link, im  and iI  denote its mass and moment of inertia about its center of mass, and 

EEm  denotes the mass of the end effector. Parameter 5l  indicates the distance between the two actuation motors. 
The value of these parameters can be found in Table (2). 

 

Fig. 4. (a) Planar dynamic model of the pantograph, (b) Considered contact configuration. 

 
Table 2. Dynamic parameters of the pantograph. 

Parameter Value Description 

1 3,l l  0.1449 m Length of links 1 and 3 

2 4,l l  0.1984 m Length of links 2 and 4 

1 3,a a  0.0519 m Position of the COM of links 1 and 3 

2 4,a a  0.1081 m Position of the COM of links 2 and 4 

5l  0.0445 m Distance between axes of actuated joints 

1 3,m m  0.1202 kg Mass of links 1 and 3 

2 4,m m  0.1084 kg Mass of links 2 and 4 

EEm  0.3144 kg Mass of the end effector 

1 3,I I  0.0004 kgm2 Moment of inertia of links 1 and 3 

2 4,I I  0.0007 kgm2 Moment of inertia of links 2 and 4 

 

For planar motion, the system can be considered as a 2-DOF mechanism and the actuated joint coordinates 

1 3[ , ]Tq qq  and their time derivatives =q v  may be used as independent generalized coordinates and 
velocities, respectively. Using this representation, the mass matrix M  and the constraint Jacobian A  have been 
determined. The topology transition can be represented with one impulsive constraint that describes the sudden 
imposition of the physical contact constraint on the end point of the active device along the y direction. 
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We have performed four sets of experiments for the asymmetric configuration shown in Fig. (4b), these are 
named cases 1 to 4. Different situations have been tested by varying the angle   of the pre-event velocity vector 
of the end effector, [ , ]TEE EE EEx y  v   , with respect to the tangential direction of the contact (see Fig. (4b)). The 
velocities and expected values of cT  , aT  , and cT T    are shown in Table (3). The magnitudes of the 
velocities have been determined imposing that the total T  = 10 mJ. Note that for this configuration 1   (i.e., 
all the pre-impact kinetic energy contained in the SCM) does not correspond to having a velocity of the end point 
perpendicular to the wall. In fact, this is obtained when the angle of the velocity with respect to the tangential 
direction is   = 97.58º. This issue is addressed and further expanded in [14], where an eigenvalue problem is 
formulated to determine the directions associated with   0 and 1. 

Table 3. Computations for the four considered velocities. 

Case   
EE
v  (m/s) cT   (mJ) aT   (mJ)   

1 97.58º 0.1955 10 0 1 

2 90º 0.1921 9.82 0.18 0.98 

3 75º 0.1857 8.57 1.43 0.86 

4 60º 0.1812 6.56 3.44 0.66 
 

Each experiment has been performed several times and the results averaged. The results for the kinetic energy 
decomposition during one individual impact are shown in Fig. (5). 

 

 

Fig. 5. Kinetic energy decomposition cT , aT  during one individual experiment for cases 1 to 4. 
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Table (4) shows the actual measured quantities of the kinetic energy decomposition, the ratio  , and the 
measured impulses   and   at the tip of the active device. These impulses are defined positive with the sense 
indicated in Fig. (4b). The first represents the impulse of the normal contact force associated with the constraint, 
whereas the second denotes the impulse of the non-ideal force developed along the tangential direction. The 
results are in very good agreement with the previous computations in Table (3). Several conclusions can be 
drawn from them. First of all, we find that the maximum constraint impulse is observed for the case of maximum 
ratio   (case 1). Hence, cT 

 is a good indicator of the magnitude of the constraint forces generated during the 
transition. As it can be observed, there is a clear correlation between cT   and  . 

Table 4. Experimental results for the four cases. 

Case cT   (mJ) aT   (mJ) aT   (mJ)     (N·ms)   (N·ms) 

1 9.937 0.001   0.006 1.00 109.57  1.28 

2 9.482 0.273   0.223 0.97 105.93  1.40 

3 8.506 1.498   1.462 0.85 101.26  0.05 

4 6.531 3.490   3.017 0.65 84.97 –2.10 
 

One might expect the most intense contact impulses when the end point velocity is fully aligned with the 
constrained direction (   = 90º). However, we have shown here that this is not generally true in complex 
multibody systems such as the one considered in this work. It can also be noticed that in general a aT T   due to 
non-ideal phenomena (e.g., friction) represented by impulse  , that affect the dynamics of the SAM according 
to Eq. (6). It must be remarked that the largest change in aT  is obtained for case 4 which is the one with the 
highest tangential impulse. This change can be observed in the corresponding plot of Fig. (5). For cases 1 to 3, 
the change in aT  is smaller due to lower impulses in the tangential direction. 

As for the sign of impulse  , the positive sign for case 1 can be explained because at pre-impact time 0EEx   
(since   > 90º) and, therefore, frictional effects are mostly in the opposite sense. Case 2 is not that obvious since 
for this case we have that 0EEx  , however, the fact that  =1.40 N·ms implies that there is slipping towards the 
negative direction of the x axis during the impact interval. In case 3, the measured tangential impulse is positive 
and almost zero. One could expect a negative value of such impulse because 0EEx   (since   < 90º), however, 
the measured value implies that slip reversal takes place during the compression phase interval [ , ]i it t  .  

CONCLUSIONS 

This work presents a method for the dynamic analysis of variable topology mechanical systems based on the 
concept of bilateral impulsive constraints. The Jacobian of these constraints can be used to define subspaces of 
the tangent space of the system, which are termed “space of constrained motion” and “space of admissible 
motion”. Based on this concept, a complete decoupling of the kinetic energy of the system and the impulsive 
dynamic equations characterizing the event of topology transition can be obtained. The pre-event decomposition 
of the kinetic energy gives useful information on how energy is redistributed to establish the constraints. 

Two situations that may be characterized with impulsive constraints of that class are explored to illustrate the 
concepts of the paper. First, the dynamics of the heel strike event in bipedal locomotion is analyzed. The kinetic 
energy redistribution and the impulses on the foot generated during such event are obtained as functions of 
design parameters and configuration. This analysis provides guidelines that can be useful for control and design 
of humanoid robots. Second, a thorough experimental study of impact using an instrumented robotic testbed is 
also performed. Detailed experimental results that validate the concepts derived from the presented approach are 
reported. 

In this paper, the case of having independent constraints is considered. Nevertheless, there may be practical 
situations where the constraints generated can depend on each other (redundant constraints).  This issue will be 
further addressed as future work. 
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