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Abstract 
The dynamical analysis of multibody systems undergoing simultaneous multiple-point collisions is a 
relevant problem in various fields. One of the interesting aspects of such problem is that it shows high 
sensitivity to initial conditions (HSIC). Whether the bodies are treated as deformable bodies or rigid 
ones, the results must retain this feature.  
Rigid-body models are in principle less demanding from the computational point of view. In those 
models, HSIC is the cause that small perturbations on the impact configuration result in different 
sequences of single-point collisions yielding different end conditions.  
Most rigid-body models found in literature assume a sequence of nonoverlapping single-point 
collisions [3], and use Newton’s or Poisson’s restitution coefficients modified according to energy 
criteria. However, the real situation may imply partial overlapping, and thus the final results obtained 
under such an arbitrary hypothesis are not reliable. 
In a previous work, we proposed a simple rigid-body linear approach retaining the high sensitivity to 
initial conditions without assuming any particular collision sequence and able to cope with redundancy 
[1] applicable to 3D multiple-point smooth and perfectly elastic collisions in rigid-body systems with 
perfect constraints. The main idea consists in assuming a finite linear normal stiffness (high enough to 
assume constant configuration throughout the process) at each impact point and solving a vibrational 
problem. Two different time and space scales are used. At the macro scale, the impact interval is 
negligible, and the overall system configuration is assumed to be constant. Consequently, the inertia 
and Jacobian matrices appearing in the formulation are also constant. The approach can cope with 
redundancy, that is, can be used to treat situations where the normal velocities of some colliding points 
are linearly related. 
We now propose an extension including energy losses (ranging from low dissipation cases to perfectly 
inelastic cases). Energy losses associated with compression and expansion in percussive analysis is a 
matter as complex as the physical phenomena involved, at the nanoscale level, for different materials. 
Simplified models can be developed for specific purposes, which can retain the most relevant trends of 
internal damping and at the same time be suitable for a particular analytical approach of impact 
mechanics. In the context of this article, energy dissipation due to material deformation can be 
conveniently introduced through a bistiffness model as that shown in Figure 1 [2]. The model consists 
on an elastic force with stiffness coefficient k , nf k  , and a parallel dry friction proportional to nf  
through a coefficient  . For 1  , the resultant normal forces during compression and expansion are 
proportional to the compression displacement through two different equivalent stiffness coefficients 

compk  and expk : 
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For 1   there is no expansion, the collision is perfectly plastic.  



For a simple compression-expansion process, as the potential energy stored during compression and 
that released during expansion are proportional to compk  and expk  respectively, this hysteretic model is 
equivalent to using local energetic coefficients 2

we : 
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Figure 1: The bistiffness model for dissipation. 

For the case of perfectly elastic collisions, changes in the vibrational modes and frequencies only 
happened when there was a change in the set of colliding points (that is, when there was a transition 
from zero indentation to positive indentation or vice versa). For the case of partial inelasticity ( 1  ), 
the vibrational problem is formulated exactly in the same way, though the vibrational modes and 
frequencies change not only when there is a change in the colliding points sets but also when a 
colliding point changes from compression to expansion (or vice versa). In both cases, the total number 
of degrees of freedom (DOF) is constant throughout the process though the number of vibrational 
DOF may change. 
The case of perfectly plastic collisions shows an important difference as compared to the previous 
cases: expansion phases disappear. Whenever a colliding point P

 
reaches a zero compressing velocity 

(indicating a state of maximum compression with a spring force max max( )comp
nf F ), an instantaneous 

new unilateral constraint at P
 
appears thus reducing the number of DOF. The calculation of the 

corresponding normal constraint force N  at that point is then necessary in order to detect whether the 
constraint holds (  comp 0P  ) or disappears either because a new compression phase starts 
( maxN F ,  comp 0P  ) or because contact at P  is lost ( 0N  ). This dissipative vibrational model 
will be applied to the case shown in Figure 2. 

Figure 2:  Application case: two-link chain. 
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